
DEVELOPMENT OF OPTIMAL CONTROL METHODS FOR UNSEEDED
BATCH COOLING CRYSTALLIZATION: COMBINATION OF

FIRST-PRINCIPLE AND MACHINE-LEARNING APPROACHES

A Dissertation
Presented to

The Academic Faculty

By

Youngjo Kim

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Chemical and Biomolecular Engineering

Georgia Institute of Technology

August 2021

Copyright © 2021 by Youngjo Kim



DEVELOPMENT OF OPTIMAL CONTROL METHODS FOR UNSEEDED
BATCH COOLING CRYSTALLIZATION: COMBINATION OF

FIRST-PRINCIPLE AND MACHINE-LEARNING APPROACHES

Thesis committee:

Dr. Martha A. Grover, Advisor
School of Chemical and Biomolecular
Engineering
Georgia Institute of Technology

Dr. Ronald W. Rousseau, co-Advisor
School of Chemical and Biomolecular
Engineering
Georgia Institute of Technology

Dr. Yoshiaki Kawajiri, co-Advisor
School of Chemical and Biomolecular
Engineering
Georgia Institute of Technology

Dr. Andrew J. Medford
School of Chemical and Biomolecular
Engineering
Georgia Institute of Technology

Dr. Blair K. Brettmann
School of Materials Science and
Engineering
Georgia Institute of Technology

Date approved: April 27th, 2021



Dedicated to my family with love,

Soeun, Jooha, Jungheon, and Hyunjoo



ACKNOWLEDGMENTS

Foremost, I thank my advisors, Dr. Martha A. Grover, Dr. Ronald W. Rousseau, and

Dr. Yoshiaki Kawajiri, for their continuous encouragement, support, and guidance in my

entire progress of the study. For five years, I have had chances to learn and discuss the

fundamentals and control of crystallization. I will remember every moment with them in

the lab, office, and even virtual space forever. I would also like to appreciate Dr. Andrew

J. Medford and Dr. Blair K. Brettmann as my committee members for giving valuable

suggestions and recommendations on my thesis.

I also appreciate Hanwha Solutions Chemical Division for the financial support and

wonderful opportunity that I have been able to study at Georgia Tech.

I want to show my thanks to all of the Grover group members, especially for the crys-

tallization group, including Stefani Kocevska, Matt McDonald, Giovanni ”John” Maria

Maggioni, Mustafa Fatih Ergin, Hossein Salami, and Marcellus Fernandes de Moraes. I

will keep in my mind the happy time and experiences that we shared for discussion for our

works and enjoying Atlanta.

I would like to thank all Korean students in ChBE who helped me when I arrived in

Atlanta and shared their life experiences in this school and city. Their encouragement and

assistance have been beneficial to my family for five years.

I also thank all of my family members in South Korea, including my parents, parents-

in-law, and siblings. They have encouraged and trusted me to overcome the hard times I

faced during the life in Atlanta.

Most importantly, I am really grateful to my wife, Hyunjoo Shin, for her plenary love

and support for five years. After I decided to study at Georgia Tech, she trusted me, and

come with me to this unfamiliar place, and supported me devotedly. I would also like

to thank my daughters and son, Soeun, Jooha, and Jungheon, for their cheerful love and

support.

iv



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxvi

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2: Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Mechanisms in crystallization . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Growth and dissolution of crystals . . . . . . . . . . . . . . . . . . 9

2.1.3 Agglomeration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Breakage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Control of crystallization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Model-free control . . . . . . . . . . . . . . . . . . . . . . . . . . 14

v



2.2.2 Model-based control . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Measurements in experiments . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Focused beam reflectance measurement . . . . . . . . . . . . . . . 16

2.3.2 Attenuated Total Reflectance-Fourier Transform Infrared . . . . . . 18

2.3.3 Characteristics of crystals . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3: A population balance model to describe unseeded batch crystalliza-
tion with temperature cycling . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Population balance model . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 The method of moments . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Materials and equipment . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Dissolution experiments . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Crystallization experiments with temperature cycling . . . . . . . . 37

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4.1 Observation for agglomeration and breakage . . . . . . . . . . . . . 38

3.4.2 Temperature plateau and reproducibility . . . . . . . . . . . . . . . 39

3.4.3 Results of dissolution experiments . . . . . . . . . . . . . . . . . . 40

3.4.4 Results of crystallization experiments with temperature cycling . . . 42

3.5 Results of parameter estimation and model validation . . . . . . . . . . . . 45

3.5.1 Parameter estimation for crystal dissolution . . . . . . . . . . . . . 45

vi



3.5.2 Parameter estimation for nucleation and crystal growth . . . . . . . 47

3.6 Analyzing the crystallization system through the PBM . . . . . . . . . . . . 52

3.6.1 Analysis of nucleation, growth, and dissolution rates . . . . . . . . 52

3.6.2 Effect of temperature cycling on crystal size distribution . . . . . . 55

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4: Open-loop control of batch cooling crystallization through machine
learning approach utilizing training data from the PBM . . . . . . . 60

4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 Exploration for the optimal control policy . . . . . . . . . . . . . . . . . . 61

4.2.1 Determination of reduced order states . . . . . . . . . . . . . . . . 61

4.2.2 Markov state model to describe the crystallization dynamics . . . . 63

4.2.3 Finding the optimal control strategy via dynamic programming . . . 65

4.3 Training set generation using the PBM . . . . . . . . . . . . . . . . . . . . 69

4.4 Investigation and validation of optimal control policies . . . . . . . . . . . 73

4.4.1 Validation of obtained control policy using the PBM simulation . . 73

4.4.2 Experimental validation of obtained control policy . . . . . . . . . 81

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Chapter 5: Correlation between measurements and PBM simulation to realize
the feedback control . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Investigation into relationships between crystal size and chords . . . . . . . 89

5.3 Selection of predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Shallow neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



5.4.1 Information criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4.2 Determination of the transfer function and the number of neurons . 103

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Chapter 6: Feedback Control of mean volume crystal size and crystal mass
through optimal feedback policy . . . . . . . . . . . . . . . . . . . . 110

6.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Optimal feedback control of crystallization . . . . . . . . . . . . . . . . . . 111

6.2.1 Experimental implementation of the feedback control . . . . . . . . 113

6.2.2 Results of the feedback control . . . . . . . . . . . . . . . . . . . . 113

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Chapter 7: Conclusion and recommendation . . . . . . . . . . . . . . . . . . . . 125

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Development of a digital twin of the crystallizer . . . . . . . . . . . 127

7.2.2 Possible attempts for better crystallization control using dynamic
programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.3 Determination of particle size distribution using other methods . . . 130

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter A: Space-time conservation element/solution element (CE/SE) method . 133

A.1 Definition of conservation element and solution element . . . . . . . . . . . 133

A.2 Approximation of ux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

viii



Chapter B: The determination of volume shape factor for paracetamol crystals . 142

B.1 Gravimetric observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.2 Geometrical estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter C: Comparison of crystal dissolution rate between the literature model
and this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Chapter D: Determination of particle size distribution using the microscopic
method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Chapter E: Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

E.1 Comparisons between experimental data and PBM results . . . . . . . . . . 155

E.2 Open-loop control results using the obtained optimal temperature profiles . 160

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

ix



LIST OF TABLES

3.1 Experimental conditions and results of dissolution experiments . . . . . . . 41

3.2 Conditions and measured results of crystallization experiments . . . . . . . 43

3.3 Comparisons of final crystal mass between by balance and by ATR-FTIR . . 43

3.4 Estimated parameters and confidence intervals for the primary nucleation
rate, secondary nucleation rate, and growth rate of crystals . . . . . . . . . 45

3.5 Comparison of experimental and predicted mean crystal sizes from differ-
ent temperatures using the same initial crystals (425 – 500 µm) . . . . . . . 47

3.6 Estimated parameters and confidence intervals for the primary nucleation
rate, secondary nucleation rate, and growth rate of crystals . . . . . . . . . 47

3.7 Comparisons of activation energy and exponent for crystal growth rate . . . 48

3.8 Comparisons of final mean crystal size between sieving analysis and simu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Dynamic programming algorithm for solving optimization problem using
Equations (4.12) and (4.13) . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Ranges of condition for random simulation to obtain training data set . . . . 71

4.3 Comparison among targets, predicted results by the obtained optimal poli-
cies, and the PBM simulation results . . . . . . . . . . . . . . . . . . . . . 76

4.4 Results comparison among targets, experimentally sieved and weighed re-
covered crystals, and the PBM simulation using measured temperature pro-
files from open-loop experiments . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Steps of stepwise linear regression to choose appropriate predictors for s1 . 97

x



5.2 Examples of transfer functions for the neural network . . . . . . . . . . . . 100

5.3 Comparison of information criteria values depending on the neuron num-
bers for each transfer function. . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Results comparison among targets, simulation results, open-loop experi-
mental results, and feedback experimental results. This table also compares
results from feedback control experiments by the PAT monitoring and by
sieving and weighing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1 Inputs to estimation each φ using Equation (A.15) . . . . . . . . . . . . . . 137

B.1 The observed volume mean size by gravimetric method . . . . . . . . . . . 142

B.2 The observed volume mean size by geometric method . . . . . . . . . . . . 146

C.1 Comparison of dissolution rate based on kinetics between the literature and
this work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xi



LIST OF FIGURES

2.1 Categories of nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Trends of free energies to determine the critical size of the cluster . . . . . . 6

2.3 Classical nucleation theory and two-step nucleation theory . . . . . . . . . 8

2.4 The possible sites on a surface for growing crystals: (A) flat surface, (B),
step site, and (C) kink site. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Steps of agglomeration: (1) approaching crystals, (2) interacting crystals
in the microscopic scale that represents zoomed-in part of the dashed-line
circle in the first figure, and (3) bonding crystals where the dark blue lines
show the agglomerated surfaces on crystals. . . . . . . . . . . . . . . . . . 13

2.6 FBRM measuring principle. (a) A schematic diagram inside the FBRM
probe, (b) The measuring chord lengths and counts with the rotating laser.
The pink circle is the laser path from the probe, and the red arcs are the
detected chords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 IR spectra for pure ethanol and paracetamol solution. Peaks at 1048 cm−1

and 1667 cm−1 represent ethanol and paracetamol, respectively. . . . . . . 19

2.8 Change of IR peak-height ratio based on temperature. Values shown to-
gether with the peak ratios are the prepared concentration of the solution.
Peak-height ratio has a nonlinear relationship with the solution concentra-
tion and the system temperature. . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Five sets of solubility measurement data for paracetamol in the ethanol so-
lution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Solubility of paracetamol in ethanol. . . . . . . . . . . . . . . . . . . . . . 22

xii



2.11 An example of the measurement of the volume shape factor of crystals. In
this example, the crystal sizes are between 355 µm and 425 µm, and the
geometric mean crystal size of two boundaries, 388.4 µm, represents all
crystal sizes. In order to count crystals easier, crystals were grouped into
bundles of ten crystal each. The mass of the 152 crystals is 7.68 mg. . . . . 23

3.1 OptiMax system from Mettler Toledo equipped with probes for focused
beam reflectance measurements (FBRM) and attenuated total reflectance
Fourier transform infrared (ATR-FTIR) measurements. . . . . . . . . . . . 36

3.2 Chord counts profiles for 20-hour experiment with three divided ranges in
chord length distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Comparison of two experimental cases with the same temperature pro-
file. (a) non-weighted total chord counts, (b) square-weighted total chord
counts, (c) concentration of paracetamol in ethanolic solution, (d) supersat-
uration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Comparisons of concentrations in dissolution experiments with different
initial seed sizes. (a) 10 ◦C and (b) 20 ◦C. . . . . . . . . . . . . . . . . . . 42

3.5 Mass of crystal and temperature profile from crystallization experiments.
(a) Exp. 8, (b) Exp. 9, (c) Exp. 10, (d) Exp. 11, (e) Exp. 12, and (f) Exp.
13: blue solid line — crystal mass in the solution and red dash-dotted line
— temperature profile. Ranges of axes in all figures are fixed based on the
largest range among all data sets for easier comparison. . . . . . . . . . . . 44

3.6 Supersaturation and temperature profile from crystallization experiments.
(a) Exp. 8, (b) Exp. 9, (c) Exp. 10, (d) Exp. 11, (e) Exp. 12, and (f)
Exp. 13: blue solid line — supersaturation and red dash-dotted line —
temperature profile. Ranges of axes in all figures are fixed based on the
largest range among all data sets for easier comparison. . . . . . . . . . . . 44

3.7 Experimental data and fitted result for training sets: blue upward triangle:
462.5 µm and 30 ◦C, red circle: 325.5 µm and 20 ◦C, purple rhombus:
655 µm and 20 ◦C, green asterisk: 462.5 µm and 15 ◦C, orange downward
triangle: 462.5 µm and 10 ◦C, and solid lines on data points represent the
fitted results by model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Experimental data and predicted result for test sets: yellow square: 462.5
µm and 20 ◦C, purple plus sign: 655 µm and 10 ◦C, and solid lines on data
points represent the predicted results from the model . . . . . . . . . . . . 46

xiii



3.9 Comparisons between experimental data and fitted results for the Exp. 8
in training sets: (a) supersaturation, (b) crystal mass in the solution, (c)
volume density distribution, and (d) cumulative volume density distribution. 49

3.10 Comparisons between experimental data and fitted results for the Exp. 11
in test sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume
density distribution, and (d) cumulative volume density distribution. . . . . 50

3.11 Trends of (a) the primary nucleation rate, (b) secondary nucleation rate, and
(c) crystal growth and dissolution rate based on the supersaturation for Exp.
12. The grey dashed line in Figure (c) represents the saturation level is 1 to
compare the saturation in the solution is supersaturated or undersaturated. . 53

3.12 Trends of total nucleation rate according to supersaturation for Exp. 12.
The total nucleation rate is plotted as the logarithm in this figure. The solid
orange line represents the supersaturation of 1.05. . . . . . . . . . . . . . . 54

3.13 Trend of volume-weighted mean crystal size for Exp 13. Dashed black lines
are to compare L̄43 for each temperature cycle. Inset: Zoomed-in profile of
oscillation of trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.14 Crystal characteristics according to temperature profiles with and without
temperature cycling: (a) Supersaturation, (b) mean volume crystal size
(L̄30) and volume-weighted mean crystal size (L̄43), and (c) numbers of
crystals less than 55 µm and all ranges for each case. The numbers, 1 and
2, as subscript represent the case of simulation. . . . . . . . . . . . . . . . 57

4.1 Schematic diagram of the MSM on the state space. The state change from
current state, sτ , moves to the state at the next time step according to the
current state and current supersaturation level, uτ , through the function,
F (sτ , uτ ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Comparison between (a) point-to-point dynamics and (b) cell-to-cell map-
ping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Randomly generated temperature profile scheme for unseeded crystalliza-
tion simulation for the training set . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Randomly generated temperature profile scheme for seeded crystallization
simulation for the training set . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



4.5 Distributions of chosen sample points for the MSM training set: (a) crystal-
lization data points from unseeded cases, (b) dissolution data points from
unseeded cases, (c) crystallization data points from seeded cases, and (d)
dissolution data points from seeded cases. . . . . . . . . . . . . . . . . . . 72

4.6 Visualization of the Markov state model (MSM), F (s, σ), at different su-
persaturation conditions. Arrows represent the change of crystals over a
30-second interval predicted by the MSM. Subplots from (a) to (d) show
changes in the state space when crystallization happens, and subplots (e)
and (f) illustrate changes while dissolution occurs. . . . . . . . . . . . . . . 74

4.7 States and control profiles obtained by the MSM and dynamic program-
ming (DP) for target mean volume size of 225 µm and target mass of 15 g:
(a) predicted trajectory of states for optimal open-loop control toward the
target, (b) predicted distance to the target, (c) optimal temperature profile,
and (d) profiles of optimal supersaturation set point . . . . . . . . . . . . . 75

4.8 States and control profiles obtained by the MSM and DP for Case 1: target
L̄30 = 225 µm and m = 9 g, (a) predicted trajectory of states for optimal
open-loop control toward the target, (b) predicted distance to the target, (c)
optimal temperature profile, and (d) profiles of optimal supersaturation set
point. Lines and markers in dark blue color are results using the MSM and
DP approach, and lines in light red color are from the population balance
model (PBM) simulation, respectively. . . . . . . . . . . . . . . . . . . . . 77

4.9 States and control profiles obtained by the MSM and DP for Case 2: target
L̄30 = 200 µm and m = 9 g, (a) predicted trajectory of states for optimal
open-loop control toward the target, (b) predicted distance to the target, (c)
optimal temperature profile, and (d) profiles of optimal supersaturation set
point. Lines and markers in dark blue color are results using the MSM and
DP approach, and lines in light red color are from the PBM simulation,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 States and control profiles obtained by the MSM and DP for Case 3: target
L̄30 = 175 µm and m = 7 g, (a) predicted trajectory of states for optimal
open-loop control toward the target, (b) predicted distance to the target, (c)
optimal temperature profile, and (d) profiles of optimal supersaturation set
point. Lines and markers in dark blue color are results using the MSM and
DP approach, and lines in light red color are from the PBM simulation,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xv



4.11 States and control profiles obtained by the MSM and DP for Case 4: target
L̄30 = 160 µm and m = 8 g, (a) predicted trajectory of states for optimal
open-loop control toward the target, (b) predicted distance to the target, (c)
optimal temperature profile, and (d) profiles of optimal supersaturation set
point. Lines and markers in dark blue color are results using the MSM and
DP approach, and lines in light red color are from the PBM simulation,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.12 Flowchart to show the experimental implementation of the obtained tem-
perature profile for the open-loop control . . . . . . . . . . . . . . . . . . . 82

4.13 Comparison of open-loop control results for Case 1: (a) supersaturation,
(b) crystal mass in the solution, (c) volume density distribution, and (d)
cumulative volume density distribution. . . . . . . . . . . . . . . . . . . . 84

4.14 Comparison of open-loop control results for Case 4: (a) supersaturation,
(b) crystal mass in the solution, (c) volume density distribution, and (d)
cumulative volume density distribution. . . . . . . . . . . . . . . . . . . . 84

4.15 Comparison of temperature profiles for (a) Case 1, (b) Case 2, (c) Case 3,
and (d) Case 4. Blue solid lines and red dotted lines represent temperature
profiles from the MSM and DP and experimentally measured temperature
profiles, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Plots for total chord counts versus the zeroth moment, (a) for non-weighted
total chord counts, and (b) for square-weighted total chord counts. Solid
lines represent experimental data and the dashed line shows the model pre-
diction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Comparison of chord length distributions for very close experimental data
points on the mass-count space: (a) trajectory of an experiment on a mass-
count space, the chord count is square-weighted, (b) comparison of non-
weighted chord length distributions for the data points at 63 min and 85
min, and (c) comparison of square-weighted chord length distributions for
the data points at 63 min and 85 min. For (b) and (c), left figures show
original distributions and right figures show cumulative distributions. . . . . 94

5.3 Comparison of normalized total chord counts, crystal mass, and the zeroth
moments from 9 experiments to figure out the tendency of each property
during the crystallization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Comparison of normalized non-weighted chord counts that are divided into
three ranges and the zeroth moments from 9 experiments to figure out the
tendency of each property during the crystallization. . . . . . . . . . . . . . 96

xvi



5.5 Comparison between the target and fitted s1 for the training set. . . . . . . . 98

5.6 Comparison between the target and predicted s1 for the test set. . . . . . . . 98

5.7 Schematic figure of the artificial neural network . . . . . . . . . . . . . . . 101

5.8 Layer diagram of the artificial neural network. R is the number of elements
in the input layer and S is the number of nodes in the hidden layer. . . . . . 102

5.9 Three transfer functions chosen for testing the SNN model. (a) hyperbolic
tangent, (b) rectified linear unit, and (c) logistic function. . . . . . . . . . . 104

5.10 Result of model selection according to the number of neurons with tanh
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.11 Result of model selection according to the number of neurons with ReLU
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.12 Result of model selection according to the number of neurons with logistic
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.13 Comparison of predicted s1 against targets using selected SNN models for
each transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 The flow of data in the feedback control process. . . . . . . . . . . . . . . . 111

6.2 The flow of data in the feedback control process. . . . . . . . . . . . . . . . 112

6.3 Comparison of temperature profiles for all cases: (a) Case 1, (b) Case 2,
(c) Case 3, and (d) Case 4. Blue solid lines represent controlled system
temperature, and red dotted lines show setpoint at each time step. . . . . . . 114

6.4 Comparisons of final status for each control case in Table 6.1. . . . . . . . . 117

6.5 Feedback control results for Case 1: (a) trajectory of reduced-order states,
(b)
√
dτ profile, (c) monitored crystal mass profile, and (d) measured su-

persaturation profile. In panel (a), blue circles and line represent measured
states, black dot is the target, and the red ⊕ shows the final measured state.
Crystal mass and supersaturation are measured by ATR-FTIR. . . . . . . . 118

xvii



6.6 Feedback control results for Case 2: (a) trajectory of reduced-order states,
(b)
√
dτ profile, (c) monitored crystal mass profile, and (d) measured su-

persaturation profile. In panel (a), blue circles and line represent measured
states, black dot is the target, and the red ⊕ shows the final measured state.
Crystal mass and supersaturation are measured by ATR-FTIR. . . . . . . . 119

6.7 Feedback control results for Case 3: (a) trajectory of reduced-order states,
(b)
√
dτ profile, (c) monitored crystal mass profile, and (d) measured su-

persaturation profile. In panel (a), blue circles and line represent measured
states, black dot is the target, and the red ⊕ shows the final measured state.
Crystal mass and supersaturation are measured by ATR-FTIR. . . . . . . . 121

6.8 Feedback control results for Case 4: (a) trajectory of reduced-order states,
(b)
√
dτ profile, (c) monitored crystal mass profile, and (d) measured su-

persaturation profile. In panel (a), blue circles and line represent measured
states, black dot is the target, and the red ⊕ shows the final measured state.
Crystal mass and supersaturation are measured by ATR-FTIR. . . . . . . . 122

7.1 Possible issues during the sieving analysis. (a) The case with a large volume
of crystals in a sieve tray, and (b) sticking crystals on the wall of the tray
due to the static electricity. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.1 Organization of grid mesh in the CE/SE scheme, and time-marching vari-
ables and the information flow to estimate one CE/SE time step. . . . . . . 134

A.2 Definition of conservation element (CE) and solution element (SE) . . . . . 135

A.3 Conservation law by the neighboring SEs. Each SE is illustrated by differ-
ent color and line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.4 Definitions of each term to estimate (ux)
n
j . . . . . . . . . . . . . . . . . . 139

B.1 Four examples of gravimetric observation of the volume shape factor for
paracetamol crystals: crystals from sieve tray (a) between 106 and 150 µm,
(b) between 150 and 212 µm, (c) between 425 and 500 µm, and (d) between
500 and 600 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.2 Shape and dimension of an octahedral crystal: (a) 3D shape of the crystals,
and (b) a side view of a laid crystal on the surface and microscopic observing144

xviii



B.3 Examples of aspect ratios for microscopically observed crystals from dif-
ferent sizes of sieve trays: (a) a crystal in 150 – 212 µm, (b) a crystal in 212
– 250 µm, (a) a crystal in 355 – 425 µm, and (a) a crystal larger than 800 µm.145

C.1 Power number versus impeller Reynolds number for seven different im-
pellers. [Reprinted with permission for Figure 6-14 from Paul et al.[165]
Copyright Wiley Books] . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.2 The angle and dimensions of the pitched blade in our system . . . . . . . . 149

D.1 The one-millimeter-ruler with 10 µm ticks for the reference . . . . . . . . . 151

D.2 Image pre-processing for cases that crystals are located too close. (a) Orig-
inal image, and (b) pre-processed image. The red dashed circles in right
and lower of figure (b) present the processed crystal images. . . . . . . . . 152

D.3 Image processing steps: (a) Calling the original image, (b) making a B/W
image, (c) finding the edges of the objects, (d) detecting clear edges, (e)
filling the holes in each object to make a crystal object, and (f) removing
small artifacts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

D.4 Comparison between sieving and image analysis: (a)with a scale factor 273
px/µm, and (b)with a scale factor 350 px/µm . . . . . . . . . . . . . . . . . 154

E.1 Comparisons between experimental data and fitted results for the Exp. 9
in training sets: (a) supersaturation, (b) crystal mass in the solution, (c)
volume density distribution, and (d) cumulative volume density distribution. 156

E.2 Comparisons between experimental data and fitted results for the Exp. 10
in training sets: (a) supersaturation, (b) crystal mass in the solution, (c)
volume density distribution, and (d) cumulative volume density distribution. 157

E.3 Comparisons between experimental data and fitted results for the Exp. 12
in test sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume
density distribution, and (d) cumulative volume density distribution. . . . . 158

E.4 Comparisons between experimental data and fitted results for the Exp. 13
in test sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume
density distribution, and (d) cumulative volume density distribution. . . . . 159

xix



E.5 Comparison of open-loop control results for Case 2: (a) supersaturation,
(b) crystal mass in the solution, (c) volume density distribution, and (d)
cumulative volume density distribution. . . . . . . . . . . . . . . . . . . . 161

E.6 Comparison of open-loop control results for Case 3: (a) supersaturation,
(b) crystal mass in the solution, (c) volume density distribution, and (d)
cumulative volume density distribution. . . . . . . . . . . . . . . . . . . . 161

xx



LIST OF ACRONYMS

AIC Akaike information criteria

AICc corrected Akaike information criteria

ANN artificial neural network

ATR-FTIR attenuated total reflectance-Fourier transform infrared

BCF Burton-Cabrera-Frank

BIC Bayesian information criteria

CE conservation element

CE/SE conservation element/solution element

CFL Cournat-Friedrichs-Lewy

CLD chord length distribution

CNT classical nucleation theory

CSD crystal size distribution

DNC direct nucleation control

DP dynamic programming

FBRM focused beam reflectance measurement

FDM finite-difference method

FEM finite-element method

FVM finite-volume method

MPC model predictive control

MSM Markov state model

PAT process analytical technology

PBM population balance model

xxi



PDE partial differential equation

PSD particle size distribution

SE solution element

SNN shallow neural network

SSC supersaturation control

xxii



NOMENCLATURE

English letters

L̄ Mean crystal size

L̄a,b Mean crystal size with ath and bth moments
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SUMMARY

This thesis reports a framework to control the mean volume size and mass of paraceta-

mol crystals in ethanolic solution for batch cooling crystallization. This framework utilizes

the Markov state model (MSM) and dynamic programming (DP) approaches based on sim-

ulation results by a population balance model (PBM) model to obtain the optimal control

policy for crystallization.

Since the MSM is an empirical model, a training data set is required, and numerous data

points are needed to improve the model accuracy. To reduce the experimental attempts to

establish the MSM, PBM simulation results are employed instead of experimental data.

The PBM includes kinetic models for primary nucleation, secondary nucleation, crystal

growth, and crystal dissolution. Crystallization experiments were carried out with temper-

ature cycling, and kinetic parameters of the PBM were estimated and validated using the

experimental data set. Since the PBM can predict the crystallization processes, this model

generates data points to train the MSM. The trained MSM and DP approach optimizes the

control policy to obtain desired crystal properties. The policies are tested by the PBM

simulation and open-loop control experiments. However, it is challenging to get desired

crystal properties using the open-loop control scheme due to the thermal response delay in

the experimental system. Also nucleation time is stochastic.

In addition, a feedback control scheme with an updated optimal control policy was

employed to obtain the desired crystals. Since the process analytical technology (PAT)

measurements, such as the focused beam reflectance measurement (FBRM), differ from

the reduced-order states in the MSM, a model was built to convert the measurements into

reduced-order states. A shallow neural network (SNN) model is developed for the data

translation, and the crystallization system employs this model to monitor the solution status

during the feedback control. The feedback control automatically manipulates the tempera-

ture profile to obtain crystals with the desired characteristics, and the control processes are

xxvi



completed when the system condition meets the control criteria. This thesis combines the

first-principle model with a machine learning approach to demonstrate a process to control

the mean volume size and crystal mass in unseeded batch cooling crystallization.

xxvii



CHAPTER 1

INTRODUCTION

Separation and purification are important steps to improve the product quality in chemi-

cal processes. Among various types of separation processes, crystallization has a simple

method but efficient results. Batch and continuous processes can be employed to operate

crystallization according to the manufacturing scale and frequency of the product change

in one process for the bulk, fine chemical, pharmaceutical, and food industries [1]. Batch

crystallization has several advantages such as simple facilities, low installation cost, and

flexibility in a product change [2]. Crystallization processes are generally operated to

produce solid crystals with desired size, crystal size distribution (CSD), and polymorphic

forms. The fundamental driving force for crystallization control is the chemical potential

which is represented as supersaturation. To obtain desired product characteristics from the

crystallization process, operators can manipulate process variables such as system temper-

ature, pH of the solution, and amount of anti-solvent. From various methods to adjust the

supersaturation, cooling crystallization can be performed by manipulating only a single

control variable, temperature, without the addition of another component [1]. However, it

is challenging to obtain the optimal temperature profile to produce crystals with desired

crystal characteristics. Therefore, the goal of this study is to control the mean size and

mass of paracetamol crystals from ethanolic solution using Markov state model (MSM)

and dynamic programming (DP), where the population balance model (PBM) simulations

generate the training set for the MSM. Chapter 2 reviews the fundamentals of crystalliza-

tion and experimental measurements relevant to this thesis.

Chapter 3 shows development of a PBM to describe the crystallization and dissolution

of paracetamol from an ethanolic solution. Kinetic model parameters for primary nucle-
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ation, secondary nucleation, growth, and dissolution of crystals are estimated to describe

experimental data. The PBM considers one-dimensional crystallization and dissolution,

which is solved by the space-time conservation element/solution element (CE/SE) method.

This model predicts crystal size distributions during the crystallization and dissolution in a

temperature cycling strategy that performs a repetition of increasing and decreasing tem-

perature.

Even though the PBM is established, obtaining optimal control policy using only the

PBM is still challenging due to the numerous potentialities of manipulating temperature

profiles. Hence, Chapter 4 demonstrates open-loop control to produce crystals with the de-

sired mean size and mass of crystals. The optimal control policies are obtained by dynamic

programming with a trained MSM through training sets by the developed PBM. The MSM

is implemented to describe the change of states, which consists of moments of crystal size.

DP is used to find the optimal control policy to produce crystals that have the desired mean

size and mass. The optimal control policies by this step are validated by simulation and

experiments.

Chapter 5 describes a transformation method for measurements given by the focused

beam reflectance measurement (FBRM) to obtain key properties of crystals, with the aim

of performing feedback control of the system. The states used in the DP approach are

modified from the simulation results, and the measurements by the FBRM capture some

characteristics of crystals such as shape, size, and density. Hence, a correlation between

the measurements and simulation results is required. For this purpose, stepwise linear re-

gression determines the appropriate input for correlating the measurements, and regression

via a shallow neural network is carried out using the chosen input.

The insights from the above works are extended to the feedback control of batch cooling

crystallization in Chapter 6. Simulation and experiments for feedback control are carried

out that generate the crystals with the target mean size and mass. The temperature profile

has been updated according to the converted measurements and the learned supersaturation

2



values stored in the lookup table. This chapter shows results through a cascade control in

the experimental system. This chapter compares the monitored control results by process

analytical technology (PAT) tools and analyzed crystals by sieving and weighing, and the

results show consistency.

Chapter 7 summarizes results and conclusion through this thesis. Moreover, recom-

mendations and further works to improve this study are discussed.
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CHAPTER 2

BACKGROUND

In this chapter, the fundamentals of crystallization and the control of crystallization pro-

cesses are presented. Also, several analysis techniques for the crystallization process and

product are described.

2.1 Mechanisms in crystallization

2.1.1 Nucleation

Nucleation is the first step of crystallization because a new phase appears from the solution.

Nucleation can be classified by two kinds of phenomena: primary nucleation and secondary

nucleation. Each nucleation step also has various causes as shown in Figure 2.1.

Primary nucleation

Primary nucleation has two categories: homogeneous nucleation and heterogeneous nucle-

ation. Homogeneous nucleation means nuclei are generated from the clear supersaturated

solution i.e., one without any suspended crystals. To explain primary nucleation, two the-

ories are suggested: the classical nucleation theory (CNT) and the two-step nucleation

theory.

The CNT expresses the formation of a new cluster using Gibbs free energy [3, 4] and

the critical size of the crystal. This idea was described by Gibbs, and the free energy for

the nucleation consists of the summation of the free energy change for the volume of the

new solid phase and the free energy change for the formation of a surface. The CNT has

an assumption that the cluster has a spherical shape, so the free energy change for cluster
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Fluid share

Contact

Figure 2.1: Categories of nucleation

formation is

∆G = ∆Gs + ∆Gv = 4πr2γls +
4

3
πr3∆Gv (2.1)

where ∆Gs is free energy change for the formation of a surface, ∆Gv is free energy change

for the phase transformation, r is the radius of the cluster or crystal, and γls is the interfacial

tension between solute cluster and solvent. ∆Gv has negative values because the solid state

is more stable. This aspect makes ∆G decrease in the system as shown in Figure 2.2.

The cluster size with the maximum value of ∆G is the critical size of the cluster, rc.

If the cluster size reaches rc, the cluster becomes stable, and remains in the solid phase.

∆Gcrit, which is the maximum value of ∆G, can be obtained through d(∆G)/dr = 0, so

d(∆G)

dr
= 8πrcγls + 4πrc

2∆Gv = 0 (2.2)

therefore,
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0

Figure 2.2: Trends of free energies to determine the critical size of the cluster

rc = − 2γls
∆Gv

(2.3)

By substituting Equation (2.3) into Equation (2.1),

∆Gcrit =
4πrc

2γls
3

(2.4)

However, ∆Gcrit is a function of the critical size of a cluster and the surface tension.

It is difficult to measure rc and γls directly, but supersaturation, S can be determined more

easily. Therefore, supersaturation was used to evaluate ∆Gcrit more easily. Here, the

Gibbs-Thomson equation is employed to find the relationship between ∆Gcrit and the su-

persaturation. The Gibbs-Thomson equation is

ln
c

cs
= lnS =

2γlsv

kTr
(2.5)
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where c is the concentration of solute in solvent, cs is solubility of solute in solvent, v is a

molar volume of solute, k is Boltzmann’s constant, T is absolute temperature, and r is the

cluster size. Substituting Equation (2.5) with rc into Equation (2.4), ∆Gcrit becomes

∆Gcrit =
16πγ3

lsv
2

3 (kT lnS)2 (2.6)

The nucleation rate has been expressed in the form of an Arrhenius equation [5, 6]

B1 = kb1 exp

(
−∆Gcrit

kT

)
(2.7)

where B1,pre is a pre-exponential factor. Substituting Equation (2.6) into Equation (2.7)

provides the final equation for the primary nucleation rate by CNT as

B1 = kb1 exp

[
− 16πγ3

lsv
2

3k3T 3 (lnS)2

]
(2.8)

The CNT assumes that the aggregation of solute molecules and the alignment of the

structure take place simultaneously. However, another theory suggests that nucleation oc-

curs through two steps: the first step is that a dense liquid phase appears, and the second

step is reorganization of the cluster into the crystalline structure. The classical nucleation

and two-step theories are described in Figure 2.3. A few cases of two-step nucleation ob-

servation have been reported. Bonnet et al. [7] directly observed separation of solute-rich

liquid phase during crystallization of a small organic molecule for the first time. The two-

step nucleation of gold crystals was also observed in real-time using transmission electron

microscopy (TEM) [8]. According to Jeon et al. [8], the atoms repeatedly transit between

dense-liquid and crystalline states during the nucleation. However, the two-step nucleation

theory is usually applied and validated for complex and large molecules such as proteins

and polymers [9, 10].

Heterogeneous nucleation takes place on foreign bodies such as dust, the wall of crys-

tallizers, and the stirrer. It is known that the foreign bodies have a role to reduce the required
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Figure 2.3: Classical nucleation theory and two-step nucleation theory

activation barrier for nucleation [11]. According to Volmer and Weber [12], the reduction

of the activation barrier depends on the contact angle between the cluster and the foreign

surface. If the contact angle is lower, the shape of the cluster becomes flatter. In this case,

the nucleation can happen at lower supersaturation due to the reduced activation barrier.

Primary nucleation is reported to have a stochastic characteristic, which has been inves-

tigated by measuring the induction time [13–17]. The stochasticity of primary nucleation

is modeled using statistical descriptions such as a Poisson distribution, the Weibull dis-

tribution, and the log-normal distribution [17]. Due to the stochastic nature of primary

nucleation, seeding is often employed to control the crystallization via secondary nucle-

ation. Another method to minimize the stochastic nature of primary nucleation is adding a

temperature plateau in the temperature profile to make the crystallization system robust to

the stochasticity [18, 19].
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Secondary nucleation

Secondary nucleation occurs through mechanisms involving existing crystals in the solu-

tion and occurs at supersaturations lower than required for primary nucleation. Even though

various mechanisms affect the secondary nucleation such as initial breeding, the formation

of needle-like and polycrystalline particulates, microabrasion through contact of crystals,

collision among crystals, impurity concentration gradient, and fluid shear, as shown in Fig-

ure 2.1, it is challenging to investigate which mechanism takes place in the crystallization

system [1].

Factors that affect secondary nucleation are the degree of supersaturation, stirring rate

or mixing intensity [20, 21], and suspension density. Therefore, an empirical model with

these factors was employed to describe the secondary nucleation as below

B2 = kb2v
i
sMT

j(S − 1)n (2.9)

where kb2 is the secondary nucleation rate constant, vs is the stirring rate, MT is the sus-

pension density, and S is supersaturation in the solution. ∆c is the difference of the con-

centration in the solution and the solubility, and this property can be used instead of S. If

vs is constant, it can be lumped with kb2.

2.1.2 Growth and dissolution of crystals

Crystal growth is a phase change between liquid and solid phases, while supersaturation

is the driving force to transport solute molecules from the solution to the crystal surface.

Crystal growth occurs as a continuous process of mass transfer from the solution to the

crystal face, which may be represented by diffusion of solute molecules through a boundary

layer, and integration on the surface of existing crystals. Hence, when one of the two

mechanisms is limiting the rate of growth, the crystal growth rate can be determined by

one of the two mechanisms.
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Solute integration into growing crystals has been described by three different growth

models: 1) continuous growth on a rough surface, 2) birth-and-spread growth, and 3)

Burton-Cabrera-Frank (BCF) growth or spiral growth [22]. The crystal surface usually

has three kinds of sites such as (A) flat site, (B) step site, and (C) kink site as shown in

Figure 2.4. Each site has different number of surrounding faces, and molecules tend to

bond at sites with higher number of nearest neighbors.

Figure 2.4: The possible sites on a surface for growing crystals: (A) flat surface, (B), step
site, and (C) kink site.

The rough growth is a simple idea that occurs at a site with the lowest energy for the

crystal integration on a rough surface of crystals. The birth and spread mechanism is also

called two-dimensional growth. The beginning of this mechanism is nucleation on the

crystal surface. Subsequently, the crystal spreads near a new cluster. Because the energy

requirement of spreading is lower than nucleation, the spreading process is faster than the

birth of the new cluster. However, the idea that nucleation is obligatory for crystal growth

cannot describe the continuous crystal growth in lower supersaturation. The BCF model

shows a self-perpetuating growth of crystal along the spiral shape, initiated by a screw

dislocation. In the BCF model, the step and kink sites are generated automatically near the

spiral, which can explain continuous growth.

Diffusion-controlled growth is the case where the diffusion process is the rate-limiting

step. In diffusion-controlled growth, the boundary layer thickness and diffusivity between
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solution and crystal affect the growth rate. The basic mass transfer principle is used to

describe the crystal growth rate. If the crystallization takes place without agitation, the

thickness of the boundary layer cannot be neglected. In this case, the crystal growth rate

can be expressed as a simple mass transfer equation [1]:

dmc

dt
= DdiffA

(
c− cs
δ

)
(2.10)

where mc is the mass of crystals, t is time, Ddiff is the diffusion coefficient, A is the surface

area, c is concentration of the solvent, cs is the solubility, and δ is the boundary layer

thickness. The boundary layer thickness may vary, based on the system condition, such as

the stirring rate, but is not measured directly. Therefore, a mass transfer coefficient, K =

D/δ, is employed. The mass of crystals and surface area are expressed by the following

equations

mc = ρcV = ρckvL
3 (2.11)

A = kaL
2 (2.12)

where ρc is the crystal density, kv is a volume shape factor of crystals, ka is an area shape

factor, V is the actual volume of crystals, and L is the characteristic length of crystals.

Substituting Equations (2.11) and (2.12) in Equation (2.10) gives

dL

dt
=

Kka
3kvρc

(c− cs) = kg∆c (2.13)

In the crystallization system, diffusion and integration affect the crystal growth simul-

taneously. It is challenging to separate the effect of each phenomenon, so the growth rate

is usually expressed as an empirical model. Since supersaturation is the driving force of

growth and the growth kinetic rate is temperature-dependent, the empirical growth rate is
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often given by

G = kg exp

(
−
Eag
RT

)
(c− cs)γg , c ≥ cs (2.14)

where G is the growth rate of crystals, kg is the pre-exponential rate constant, Eag is the

activation energy, γg is an exponential parameter on supersaturation, and R is the universal

gas constant. The subscript g represents the crystal growth.

Crystal dissolution occurs when the supersaturation becomes less than 1, and it is the

opposite mechanism to crystal growth. Crystal dissolution takes place in two steps: 1)

detachment of a molecule from the crystal surface and 2) mass transfer of the molecule

to the bulk solution through the boundary layer. Equation (2.14) expresses the crystal

dissolution in this study.

D = kd exp

(
−Ead
RT

)
(cs − c)γd , c ≤ cs (2.15)

where parameters with the subscript, d, indicating dissolution in Equation (2.15), have the

same definition as parameters in Equation (2.14).

2.1.3 Agglomeration

Agglomeration is one of the key mechanisms in the crystallization system because it can

affect the particle size distribution (PSD) and the shape of crystals [23]. According to

Brunsteiner et al., agglomeration takes place through a seriese of steps: 1) approaching

a various number of particulates on a macroscopic scale through the flow of solution, 2)

interacting among particles, solvent, impurities that are close in nanometer scale, and 3)

bonding of solid particles as shown in Figure 2.5.

This agglomeration mechanism is strongly affected by collision frequency, and the col-

lision rate is highly related to the shear rate [24]. Mumtaz et al. [25] reported that the

agglomeration rate reaches a maximum as the shear rate increases, but decreases again
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(1) (2) (3)

Figure 2.5: Steps of agglomeration: (1) approaching crystals, (2) interacting crystals in
the microscopic scale that represents zoomed-in part of the dashed-line circle in the first
figure, and (3) bonding crystals where the dark blue lines show the agglomerated surfaces
on crystals.

when the shear rate becomes higher than a certain value. Because the shear rate is pro-

portional to stirring speed, sufficiently fast enough agitation can reduce the agglomeration

since a high shear rate causes frequent collisions among crystals, which can also break ag-

glomerated crystals. Therefore, the implementation of a sufficient stirring rate can reduce

the agglomeration rate.

2.1.4 Breakage

Breakage of crystals generates a larger number of small fragments from a parent crystal by

collisions among crystals or collision between the crystal and impeller. The broken crystals

can serve as seeds for the secondary nucleation or grow into a new crystal.

An important factor of crystal breakage is crystal shape specifically the aspect ratio.

Sato et al. reported the breakage of needle-like potassium dihydrogen phosphate crys-

tals that have higher aspect ratios than a threshold aspect ratio and developed a model to

describe the crystal breakage using experimental data [26]. If crystals are spontaneously

broken in the crystallization system, this mechanism should be considered in the model-

ing. However, if the crystal breakage is not observed from the experimental system, the

population balance model (PBM) model does not need to include the mechanism.
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2.2 Control of crystallization

2.2.1 Model-free control

The crystallization process control is challenging due to the complicated internal and ex-

ternal attributes of crystallization phenomena. Crystallization involves highly nonlinear

dynamics, stochasticity, and complexity, and the crystallization process can be affected by

unexpected external irregularities such as nonideal mixing and property changes by poly-

morphic transformations. In order to control crystallization processes, various methods

have been developed and employed, including model-free methods and model-based meth-

ods. Representative examples of model-free control methods are supersaturation control

(SSC) and direct nucleation control (DNC).

Supersaturation control

In SSC, the supersaturation, which is obtained with the measured concentration of the

mother liquor, is controlled to maintain a specified value [27–34]. In this control strat-

egy, the temperature profile is continuously moving to keep the supersaturation level at the

setpoint.

Direct nucleation control

In DNC, the in situ measurement of the number of crystals in the system can switch between

two modes, cooling and heating. When the number of crystals exceeds the setpoint, heating

is triggered to dissolve crystals; conversely, when the number of crystals is smaller than the

target number of crystals, the system switches to the cooling mode to grow crystals. In this

manner, the fines can be removed so that the mean crystal size is increased. To estimate

the number of crystals, the focused beam reflectance measurement (FBRM) can be utilized

[35–39].

Moreover, SSC and DNC can be combined for optimized crystallization control [40].
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For SSC and DNC methods, the measured concentration and the system temperature are

used to estimate the supersaturation, and temperature or amount of anti-solvent are manipu-

lated through a cascade PID controller. Model-free control is intuitive, but it has drawbacks

such as unknown a priori batch time and the lack of optimality.

2.2.2 Model-based control

In contrast to a model-free feedback control scheme, feedback control approaches based

on an objective function can be effective to minimize the process cost. System control

with an objective function can estimate the optimal input policy to minimize the expected

operation cost or to maximize the productivity of the crystallization system. The optimal

input policy can be determined according to the in situ measurement and a dynamic model.

Key examples of the model-based control methods are model predictive control (MPC) and

dynamic programming (DP) [41–43].

Model predictive control

MPC has been widely used in chemical process control following the improvement of

computers. Researchers began to use model-based optimization for crystallization control

in the 1990s [43]. In this strategy, online computation is required to predict the states at the

next time step based on either a first-principle model or an empirical model. The PBM is

a typical first-principle model, but it is a partial differential equation that is nonlinear and

computationally expensive. A reduced model with several ordinary differential equations

based on the method of moments was applied for MPC to control the crystallization [44–

47]. Moreover, MPC for batch crystallization has been conducted in simulations due to

nonlinear characteristics of the PBM, with only a few applications of MPC in experimental

crystallization processes [48, 49].
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Dynamic programming

The DP approach for crystallization control also requires a model to establish the control

policy, but control actions can be precalculated offline and stored in a look-up table. This

approach breaks down a complicated problem into simple sub-problems and searches sub-

problem solutions from the look-up table instead of repeating calculations for the same sub-

problems. This approach is simple to apply to actual systems so that domain practitioners

can use it intuitively. The dynamic model in this approach does not need to be a theoretical

model. Griffin et al. utilized the concept of the Markov state model (MSM) for the dynamic

model of a crystallization system, and used data points measured using the FBRM and

attenuated total reflectance-Fourier transform infrared (ATR-FTIR) in real-time to train the

MSM [50, 51]. The first-order MSM has an assumption that a state transition depends on

the state and input only at the current time; past conditions do not affect the future states.

A look-up table stores the trained MSM results, and the DP approach employed data in the

look-up table to obtain optimal control policy for crystals with desired characteristics. This

idea was applied in this thesis, with details described in Chapter 4.

2.3 Measurements in experiments

2.3.1 Focused beam reflectance measurement

The FBRM is an in situ instrument with applications that include investigating crystalliza-

tion fundamentals [52], designing crystallization process [53–55], monitoring and oper-

ating crystallization processes [56, 57], optimizing crystal shape [58, 59], and managing

impurities [60, 61]. This equipment shoots a laser and detects the back-scattered light on

the surface of crystals. As the laser passes over the surface of a particle in a circular move-

ment, the length and number of the arcs that reflected the laser are recorded. Figure 2.6

schematically shows how the FBRM works.

If the crystal surface is perfectly smooth, it is easy to analyze back-scattered light. How-
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ever, the crystal surface is usually rough due to various reasons such as secondary nucle-

ation, agglomeration, or breakage. Therefore, the FBRM has two different chord-selection

modes depending on which phenomenon the user focuses on: 1) primary mode and 2)

macro mode. The primary mode collects all reflectance signals without any treatments,

so fines or needle-type particles can be detected with higher sensitivity. This mode has

advantages when nucleation and breakage are the desired phenomena to observe. On the

other hand, the macro mode uses a digital filter to reduce sensitivity when it is thought that

the edges of the particles are nearby. If the crystal surface has steps or bumps, the primary

mode might collect a number of detected chords on the same crystal surface. However,

the macro mode can count this as one chord so that this mode can reduce error from the

roughness of growing crystals.

The measured chord length is not perfectly translated to the particle size because the

laser randomly passes on the crystal. In addition, the crystal shape affects the chord length.

For example, a system with spherical crystals can provide a broad chord length distribution

z
x

y
x

(a) (b)

Beam splitter

Sapphire 
window

Laser beam

Fiber optic

Figure 2.6: FBRM measuring principle. (a) A schematic diagram inside the FBRM probe,
(b) The measuring chord lengths and counts with the rotating laser. The pink circle is the
laser path from the probe, and the red arcs are the detected chords.

17



(CLD) [62], but needle-shape crystals show skewed distributions [63]. Therefore, many

studies have been reported to convert between CLD and CSD using various methods. Even

though the actual systems are in 3-dimensional space, the scanned region by the laser can

be considered as a 2-dimensional plane by a projection. Hence, geometric models are

developed to convert for different particle shapes [62, 64–68]. Li et al. instead employed

a fingerprint region from CLD and a convolution form to recognize CSD [69, 70]. Irizarry

et al. [71, 72] employed data-driven approaches to translate CLD to CSD for unimodal

and multimodal size distributions. Crestani et al.. used an artificial neural network (ANN)

model to translate from CLD by the FBRM to CSD by the sieving analysis [73].

2.3.2 Attenuated Total Reflectance-Fourier Transform Infrared

Calibration for solution concentration

An ATR-FTIR instrument was employed to recognize the concentration of paracetamol in

ethanolic solution in this study. The concentration of the paracetamol solution was esti-

mated by the measured IR absorbance data and a calibration model. The mass ratio of the

paracetamol to ethanol was used for consistency with previous studies [19, 74–77]. Gen-

erally, the definition of a solution concentration is the mass or mole of a solute divided by

the volume of a solution. However, it is difficult to track the accurate volume of a solution

because it depends on the dissolved amount of solute. Thus, the unit of g-solute/g-solvent

or g-solute/kg-solvent was employed.

A univariate approach was applied to infer the characteristics of crystallization because

only two species affect the concentration of the solution; univariate approaches usually use

peak heights, integrated peak area, or ratio of the normalized peak heights or area [78].

In this study, the calibration model is based upon the ratio of peak heights of each mate-

rial on the FTIR spectrum because the peak height of paracetamol increases, and the peak

height of ethanol decreases when the paracetamol concentration increases. According to

the previous research [19], the wavenumbers of ethanol and paracetamol are 1048 cm−1
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and 1667 cm−1, respectively, as shown in Figure 2.7. However, the FTIR signals depend

on various conditions such as probe alignment, contact of liquid and probe, and background

absorbance [79]. To handle this problem, the peak at 1800 cm−1, which is not affected by

the concentration of paracetamol and ethanol, was used as a reference peak. The concen-

trations of ethanol and paracetamol were given by normalizing two peaks, at 1048 and

1667 cm−1, by that of the reference peak. The concentration is based on the ratio between

these two species, so the ratio of peak heights for paracetamol and ethanol was applied to

determine the concentration in the solution.

A set of experiments was performed to relate the response of the peak-height ratio of IR

absorbance to the actual concentration and temperature change. Paracetamol-ethanol solu-

tion samples ranging from pure ethanol to 0.40 g-solute/g-solvent were prepared, and the

ratios of peak heights for paracetamol and ethanol of IR absorbance were measured. The
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Figure 2.7: IR spectra for pure ethanol and paracetamol solution. Peaks at 1048 cm−1 and
1667 cm−1 represent ethanol and paracetamol, respectively.
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range of concentration for this calibration model was determined up to 0.40 g-solute/g-

solvent because the desired maximum concentration in this work was 0.35 g-solute/g-

solvent. Figure 2.8 shows that the ratio of peak heights changes according to the tem-

perature of the solution even when the concentration of the solution is constant. Hence, the

influence of temperature should be considered in the calibration model between the ratio of

IR peak heights and concentration. The calibration model is

h = k1X
2 + k2XT + k3X + k4T + k5T

2 + k6 (2.16)

where h is the FTIR peak-height ratio. Here, X is the mole fraction of paracetamol in the

ethanolic solution, and T [K] represents the temperature of the system. The sensitivity of

ATR-FTIR depends on the environmental conditions in the lab, so calibration is carried out
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Figure 2.8: Change of IR peak-height ratio based on temperature. Values shown together
with the peak ratios are the prepared concentration of the solution. Peak-height ratio has a
nonlinear relationship with the solution concentration and the system temperature.
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periodically to obtain accurate parameters for Equation (2.16).

Determination of solubility of paracetamol in ethanol

Solubility of paracetamol in ethanol was determined by five sets of continuous dissolution

experiments by increasing temperature at the rate of 0.5 K/min. Each dissolution experi-

ment was performed on a different day and the measured data varied slightly. Figure 2.9

shows the result of the solubility measurements. Solubility data sets have similar trends,

and the average values of these data sets were used to correlate the solubility of paracetamol

in ethanol, cs [g-paracetamol/g-ethanol], as the following polynomial equation

cs = −8.707 + 9.669× 10−2T − 3.610× 10−4T 2 + 4.590× 10−7T 3 (2.17)
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Figure 2.9: Five sets of solubility measurement data for paracetamol in the ethanol solution.
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Figure 2.10: Solubility of paracetamol in ethanol.

where T is the system temperature, and the unit in Equation (2.17) is K.

The solubility of paracetamol in ethanol was reported several times [74, 80, 81], and

the solubility from this study was compared to reported data in Figure 2.10. The obtained

solubility curve shows similar trend to the results by Worlitschek and Mazzotti [74].

2.3.3 Characteristics of crystals

Volume shape factor of crystals

It is difficult to determine the volume of paracetamol crystals directly because of its com-

plicated shape. Hence, a volume shape factor has been used to approximate the volume and

mass of crystals [82]. Generally, the volume shape factor, kv, is defined as follows:

kv =
V

L3
=

mc

ρcL3
(2.18)
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where kv is the volume shape factor of crystals, V is the actual volume of crystals [m3],

L is the characteristic length of crystals [m], mc is the mass of one crystal [kg], and ρc is

the crystal density [kg/m3]. The characteristic length was determined by the sieving and

assumed to be the second-longest length of the crystal.

1st group

2nd group
3rd group

4th group

5th group

6th group

7th group

8th group

9th group

10th group

11th group

12th group

13th group
14th group

15th group

Figure 2.11: An example of the measurement of the volume shape factor of crystals. In
this example, the crystal sizes are between 355 µm and 425 µm, and the geometric mean
crystal size of two boundaries, 388.4 µm, represents all crystal sizes. In order to count
crystals easier, crystals were grouped into bundles of ten crystal each. The mass of the 152
crystals is 7.68 mg.

The volume shape factor of paracetamol crystals was evaluated through gravimetric

and geometric methods. Since the density of paracetamol crystals is already reported [70],

measured crystal size and mass can provide the shape factor, via Equation (2.18). As shown

in Figure 2.11, the mass and number of sieved crystals were measured to estimate the shape

factors. In this work, 15 observations were carried out with crystals from seven different

sieve size ranges of trays with 106 – 150, 150 – 212, 212 – 250, 355 – 420, 420 – 500,

500 – 600, and 600 – 850 µm, resulting in a shape factor of 0.778, which is close to 0.866

obtained by Worlitschek and Mazzotti [74].

In addition, geometric analysis was utilized to evaluate the volume shape factor with an

assumption that the paracetamol crystal has octahedral shape, and the determined volume

shape factor is 0.797. The detail steps and results for gravimetric and geometric analyses

are shown in Appendix B.
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Mean crystal size

Mean crystal size is defined by two different systems: 1) the moment-ratio system and 2)

ISO system, but the former is usually employed since it can address particle size distribu-

tions [83]. Mean crystal size can be evaluated by various definitions, and more than 20

different methods have been reported [84–86]. A few examples of widely used mean size

definitions when the crystal density is assumed constant are shown below.

L̄10 =
ΣniLi
Σni

=
µ1

µ0

(2.19)

L̄21 =
ΣniL

2
i

ΣniLi
=
µ2

µ1

(2.20)

L̄32 =
ΣniL

3
i

ΣniL2
i

=
µ3

µ2

(2.21)

L̄43 =
ΣniL

4
i

ΣniL3
i

=
µ4

µ3

≈ Σ(MiLi)

ΣMi

(2.22)

L̄30 =

(
ΣniL

3
i

Σni

)1/3

=

(
µ3

µ0

)1/3

(2.23)

where L̄ab represents the mean crystal size with used moments, µa and µb; n, L, and M

are the number density of crystals, characteristic length of crystals from each sieve tray,

and mass of crystals, respectively; and subscript i is the size bin number. Among these

methods, the volume-weighted mean crystal size, which is defined as Equation (2.22), is

frequently used to evaluate the mean crystal size [86], and this mean size can represent the

crystal size distribution by sieving analysis [85]. The volume-weighted mean crystal size

and mass mean size have the same value under the assumption that the crystal density is

constant. The sieving method provides crystal mass on each sieve tray as the result, so the
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mean size of the sieve tray and mass from each sieve tray can be used to estimate the mass

mean crystal size. The volume-weighted mean size is useful to evaluate the quality and

yield of product from the process, but the fines cannot affect the volume-weighted mean

size very much, due to the small mass of each fine. Therefore, a different method is needed

to assess the influence of fines on the mean crystal size of the product.

The mean volume size, L̄30, uses µ3 and µ0, so L̄30 depends on the total number of

crystals for crystals with a similar total volume. A large mean volume size for the same

mass of crystals shows that the total number of crystals is low. Especially for cases of a

similar volume density distribution, the larger mean volume size indicates the crystal bulk

has less fines. The formation of nuclei by secondary nucleation can result in large amounts

of fine particles being produced in the crystallizer. So, if the purpose of process control is

to reduce the fraction of fine particles, obtaining a temperature profile that can minimize

the number of fines is required for efficient process operation.
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CHAPTER 3

A POPULATION BALANCE MODEL TO DESCRIBE

UNSEEDED BATCH CRYSTALLIZATION WITH

TEMPERATURE CYCLING

3.1 Objectives

Temperature cycling has been employed in batch crystallization processes to control many

crystal properties such as crystal size and distribution [39, 50, 51, 76], shape [77, 87], poly-

morphic form [35, 38], and chirality of crystals [88, 89]. Cycling the temperature leads to

dissolution and recrystallization, so that the system can eliminate small undesired crystals.

As reported by Wu et al. [90], a temperature-cycling strategy can be classified into the fol-

lowing three categories: 1) continuous dissolution in equipment external to the crystallizer,

2) sequential heating and cooling in the crystallizer, and 3) simultaneous heating and cool-

ing at different locations in a single crystallizer. Among these three categories, the second

approach is used here because of the simplicity in the experimental setup.

Among various crystal qualities, a unimodal crystal size and narrow size distribution

improve the efficiency of filtration in commercial processes [1, 74]. Mathematical mod-

eling can reduce the experimental effort and time needed to optimize temperature profiles

for obtaining a desired crystal size distribution. Such models should include nucleation

and growth of crystals, and also may include agglomeration and breakage. However, the

main mechanisms that affect the final crystal product qualities are nucleation and growth

[1]. Moreover, the dissolution and disappearance of crystals take place as well when the

temperature-cycling strategy is employed. Hence, the model must describe the disappear-
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ance of crystals as well as nucleation, growth, and dissolution in order to model attributes

of crystallization by temperature cycling. In this study, a population balance model (PBM)

is used to describe the crystallization in a batch process. While many studies have exam-

ined primary nucleation, secondary nucleation and growth [19, 74, 91–93], fewer modeling

studies involving disappearance of crystals are found in the literature [76, 94, 95].

The PBM is a partial differential equation (PDE) and most PDEs cannot be solved ana-

lytically except for very simple cases. Therefore, various techniques have been employed to

solve the PBM numerically, which include method of moments [96–98], method of char-

acteristics [99, 100], finite-element method (FEM) [101], finite-volume method (FVM)

[102–104], and the space-time conservation element/solution element (CE/SE) [19, 105,

106]. Qamar et al. [106] compares various numerical methods to solve the PBM, and the

CE/SE scheme demonstrated “much better performance” among tested approaches.

The present study aims to develop and validate a mathematical model of unseeded

crystallization of paracetamol from an ethanolic solution in a batch process employing a

temperature-cycling strategy. The model handles kinetics of primary and secondary nu-

cleation, growth and dissolution of crystals, and disappearance of fines. Experiments that

apply temperature-cycling strategies were carried out to estimate kinetic parameters. Each

experiment employed PAT tools such as FBRM and ATR-FTIR spectroscopy to measure

properties of particles and solution, respectively. The final crystal size distribution was

analyzed by an ex situ method, sieve analysis after washing and drying crystals.

3.2 Population balance model

The one-dimensional population balance model is often used to describe a well-mixed

batch crystallization system [19, 74]. If agglomeration and breakage of crystals can be

ignored, the population balance equation can be expressed as

∂n

∂t
+G

∂n

∂L
= 0 (3.1)
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where n represents the number density of crystals [#/(µm·kg of solvent)], G denotes the

growth rate of crystals [µm/min], t is the time [min], and L is the characteristic crystal size

[µm]. Equation (3.1) is based on assumptions that the crystal shape does not depend on

the crystal size and the growth rate is size-independent and without dispersion. The initial

condition and the boundary condition for batch crystallization from a clear solution are

n(t = 0, L) = n0(L) (3.2)

n(t, L = 0) =
B

G
, S ≥ 1 (3.3)

n(t, L = 0) = 0, S < 1 (3.4)

where B denotes the nucleation rate [#/(min·kg of solvent)], n0(L) is the initial number

density, and S is the supersaturation, which is defined as S = c/cs. c is the concentration

in the solution and cs is the solubility at the system temperature. It is assumed that new

nuclei appear only in the smallest size domain. Therefore, n0(L) is zero in the entire

domain in an unseeded crystallization.

The nucleation rate, B, in Equation (3.3), can be divided into primary and secondary

nucleation. Primary nucleation is the mechanism in which crystals are formed from a clear

solution (i.e. does not have any crystals). On the other hand, secondary nucleation models

the mechanism where formation of new nuclei is caused by existing crystals [107].

If the concentration in the solution is lower than the solubility, crystals dissolve and

some small crystals may disappear. In order to describe the disappearance of crystals, var-

ious criteria such as the critical size of crystals [94], detection limit [76], and physically

minimum size of crystals, L = 0 [95, 108–112], have been applied to describe the dis-

appearance of crystals. However, the critical size of crystals can change according to the

system condition and it is difficult to detect the exact size. Hence, the boundary condition
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in Equation (3.4) is employed in this study.

According to classical nucleation theory (CNT), the homogeneous primary nucleation

rate is given by the surface free energy change of nuclei and the free energy change on the

phase transformation.

B1 =


kb1 exp

(
− 16πν2γ3ls

3k3T 3(lnS)2

)
, S ≥ 1

0, S < 1

(3.5)

where kb1 is a pre-exponential rate constant [#/(min·kg solvent)], ν is the volume of one

solute molecule [m3], γls is the interfacial energy between crystal and solution [J/m2], k is

the Boltzmann constant [m2kg/s2/K], and T is the system temperature [K]. In this chapter,

kb1 and γls are handled as parameters, T and S are provided by experimental measurements,

and v is calculated with the molecular weight and density of the solid solute.

In this study, the secondary nucleation rate, B2, is described by an empirical model:

B2 =


kb2 (S − 1)αMβ

T , S ≥ 1

0, S < 1

(3.6)

where kb2 is the pre-exponential rate constant [#/(min·kg solvent)], MT is the suspension

density [g-solute/g-solvent], and α and β are the exponential parameters for the model.

In this model, secondary nucleation is determined by the supersaturation of the solution

and mass of crystals in the slurry. The secondary nucleation is known to be affected by

collisions among crystals in the system according to the stirring rate [113–116], and differ-

ent mixing conditions cannot provide consistent collision behavior. Therefore, we used a

constant stirring speed in all experiments. The total nucleation rate, B, is determined by

B = B1 +B2 (3.7)

In this study, size-independent growth and dissolution were assumed for paracetamol
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in ethanolic solution, similar to past work [19, 74]. Hence, growth and dissolution rates of

crystals can be expressed similarly as functions of temperature and the absolute supersatu-

ration.

G = kg exp

(
−
Eag
RT

)
(c− cs)γg , c ≥ cs (3.8)

D = kd exp

(
−Ead
RT

)
(cs − c)γd , c < cs (3.9)

whereG andD are the growth and dissolution rates of crystals [(µm/min)], respectively, kg

and kd are the pre-exponential rate constants for the crystal growth [(µm/min)(g-solute/g-

solvent)−γg ] and dissolution [(µm/min) (g-solute/g-solvent)−γd], respectively, Eag and Ead

are the activation energies [J/mol] for growth and dissolution, γg and γd are exponential

parameters on supersaturation for the growth and dissolution, respectively, and R is the

universal gas constant [J/mol/K]. Crystals grow when the concentration of the solution is

higher than the solubility, but crystals dissolve into the solution under the opposite condi-

tion. Therefore, c − cs and cs − c determine the growth and dissolution of crystals in the

model, respectively.

3.2.1 Numerical method

In this work, the space-time CE/SE method was employed to obtain the solution of the

PBM. This scheme was originally developed to solve Navier-Stokes and Euler equations

[117], and it has been employed to solve many partial differential equations in fields such

as magnetohydrodynamics [118], heat transfer [119, 120], adsorption [121, 122], and crys-

tallization [19, 95, 105, 106, 108, 123, 124]. Motz et al. [105] showed that the CE/SE

method can provide more accurate and faster solutions for the PBM than those given by

the FVM, with fewer grid points. Also, Qamar et al. [106] reported that the CE/SE method

presents faster estimation and more accurate results than all other presented schemes such
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as the high resolution semi-discrete FVM and PARSIVAL. In particular, the CE/SE scheme

accurately simulated the sharp peaks and discontinuities. The details of the CE/SE method

are explained in Appendix A.

In order to describe the crystallization system including crystallization, dissolution, and

disappearance of crystals, the CE/SE scheme was coded in MATLAB™ R2019b for a size

range from 0 µm to 1000 µm with evenly spaced bins of ∆L, where ∆L is 5 µm.

3.2.2 The method of moments

The method of moments provides an alternative method for solving a PBM. The moments

of the distribution are calculated, after multiplying the PBM by Lj and then integrating

over the size L. The definition of the j th moment, µj , is

µj(t) =

∫ ∞
0

Ljn(t, L)dL, j = 0, 1, 2... (3.10)

The zeroth moment through the third moment µ0, µ1, µ2, and µ3, are proportional to the

total number, length, surface area, and volume of crystals, respectively. For a finite number

of moments, the method of moments does not provide the entire size distribution. In our

study, the moments defined in Equation (3.10) are obtained both from the model and from

experiments, and they are compared.

Under the assumption that the growth and dissolution rates are size-independent, the

moments can be calculated by solving a set of ordinary differential equations from Equa-

tions (3.1) and (3.10) [1]:

dµj
dt

= jGµj−1, j = 0, 1, 2... (3.11)

When S > 1, the time derivative of the zeroth moment, which is the rate of change in

the total number of crystals, is the nucleation rate:
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dµ0

dt
= B = B1 +B2 (3.12)

Since the third moment is related to the total volume of crystals in the system, the solute

concentration in the solvent is estimated using the following two equations:

c(t) = c0 − kvρcµ3(t) (3.13)

dc(t)

dt
= −kvρc

dµ3(t)

dt
= −3kvρcGµ2(t) (3.14)

where c0 is the initial concentration in the system, kv is the volume shape factor of crystals,

and ρc is the solid density of crystal [g/cm3]. This method was employed to estimate

dissolution rate parameters in this study.

3.2.3 Parameter estimation

In this study, parameter estimations were carried out for crystallization and dissolution sep-

arately by minimizing the sum of squared absolute errors between experimental data and

model predictions. Because experimental methods to obtain the crystallization and dissolu-

tion data were different, the objective functions for each parameter estimation are different.

The minimization problems were solved by the fmincon function which is an SQP solver

[125] in MATLAB™ R2019b. Parameters for the primary nucleation, secondary nucle-

ation, crystal growth were obtained using the objective function, Equation (3.15), which

includes the concentration and the final volume density distribution, and parameters for

dissolution were estimated through Equation (3.16):

Φc(θc) =
Nr∑
i=1

Nd,i∑
j=1

1

Nd,i

(ĉij − cij(θc))2 +
Nr∑
i=1

Nm,v∑
k=1

1

Nm,v

(
v̂ik − vik(θc)

1012

)2

(3.15)
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Φd(θd) =
Nr∑
i=1

Nd,i∑
j=1

1

Nd,i

(ĉij − cij(θd))2 (3.16)

where θc = {kb1, σ, kb2, α, β, kg, Eag , γg}, and θd = {kd, Ead , γd} are the parameter sets

for crystallization and dissolution kinetics, respectively, Nr is the number of experimental

runs, Nd,i is the number of sampled data for ith run, Nm,v is the number of size ranges

for volume density distribution, c and v represent concentration and volume density dis-

tributions, respectively, wc is the weight for the term of concentration, ĉij and cij are the

measured and predicted concentrations; and v̂ik and vik are the measured and predicted

final volume density distribution from each run. Due to the different order of magnitude

for each term in Equation (3.15), the volume densities were divided by 1012 to balance the

significance of error terms.

To estimate the dissolution parameters, the method of moments was employed because

the objective function uses the error of only concentration in the mother liquor. On the other

hand, for the parameter estimation of crystallization, the PBM was solved by the CE/SE

method, which can solve partial differential equations efficiently. However, because the

time grid of the CE/SE method does not necessarily match the time points in the experi-

mental data, the solution of the model is interpolated for calculation of Φc. Similarly, for

the final volume density distribution, the sieving analysis has 11 unequally spaced bins

while the model has equally spaced finite elements which are 5 µm. Thus, the crystal size,

L, was integrated over multiple size ranges that match the size bins in the sieve analysis.

Uncertainty in the model parameters can be quantified via confidence intervals. To

estimate confidence intervals accurately, uncertainty in the experimental measurement must

be quantified, which requires repetition of experiments. For this problem, an alternative

method given by Bard et al. [126], which is employed for crystallization by Li et al. [19]

and Rawlings et al. [127], was used for approximation of the confidence intervals for

estimated parameters:
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(θ − θ̂)T(Vθ)
−1(θ − θ̂) ≤ χ2

Np,α (3.17)

The confidence intervals for each parameter, θ̂, are calculated by Equation (3.17) with

an assumption that the sum of squares errors follows a chi-square distribution. The degree

of freedom, Np, is the number of parameters, and α is 0.05 in 95% confidence for the

chi-squared distribution:

(Vθ)
−1 =

∑
q

(V q
θ )−1 =

∑
j

(
Bj
q

)T
(V q)−1 (Bj

q

)
, q ∈ {c, sv} (3.18)

where Vθ is a covariance matrix of parameters, θ, from different measured data for concen-

tration and sieved results for the crystallization, which are represented by c and v, respec-

tively, Bj is a Nm × Np matrix of the sensitivities, Nm = Nc + Nv is the total number of

measured variables, dy/dθ, of the nth sample, and V is the diagonal covariance matrix of

the measurements. V and Bj
k can be estimated by Equations (3.19) and (3.20):

V q =
1

Nd,q

Nd,q∑
i=1

e2
i,q, q ∈ {c, v} (3.19)

whereNd,q is the number of samples for each measurement, e2
i is the squared error between

experimental data and predicted results using θ̂, e.g. e2
i,c = (ĉi − ci(θ̂))2 for concentration.

The sensitivity matrix, Bj
k is approximated by the finite difference method.

Bj
k,q =

∂yj
∂θ

∣∣∣∣
θ=θ̂

≈
yjk,q(θ̂ + hkek)− yjk,q(θ̂)

hk
, k = 1, 2, . . . , Nm, q ∈ {c, v}

(3.20)

where yjk,q is the simulated result according to parameters, hk is a perturbation to θ̂, and ek

is a 1 × Np unit vector. In this work, Nm,c = 1 for concentration, Nm,v = 11 for sieving,

and Np = 11 for the number of parameters. The degree of perturbation, hk, is 0.1% of the

magnitude in each element of θ̂.
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3.3 Experimental methods

3.3.1 Materials and equipment

Crystallization and dissolution experiments for paracetamol (Sigma-Aldrich, > 99%) were

performed in ethanol (KOPTEC, 200 proof anhydrous) in a 250-ml glass crystallizer with

a pitched four-blade stirrer and temperature controller. The equipment, which is shown in

Figure 3.1, includes three sensors which are Attenuated Total Reflectance-Fourier Trans-

form Infrared (ATR-FTIR), Focused-Beam Reflectance Measurements (FBRM), and a tem-

perature sensor to measure characteristics of solutions and crystals in the crystallizer. The

crystallization system, Optimax™ from Mettler-Toledo, can control the experimental con-

ditions via a connected computer and software, iControl™ 6.0 by Mettler-Toledo. The

ATR-FTIR, ReactIR iC10™ by Mettler-Toledo, measured the IR spectrum for wavenum-

bers from 650 to 3000 cm−1, at a rate of one sample every 30 seconds. The ATR-FTIR

equipment was purged by compressed air and cooled down by liquid nitrogen before every

measurement. Measured IR absorbance data were collected through software, iCIR™ by

Mettler-Toledo. The concentration of the solution was evaluated based on measured IR

absorbance data with a calibration model; further detail is provided later in the calibration

section. The FBRM equipment, ParticleTrack G400™ by Mettler-Toledo, was set in the

macro mode with the laser focus distance of 0 µm and a scanning speed of 2 m/s. The

FBRM measures the chord length every 30 seconds, and the computer and the software,

iCFBRM™ by Mettler-Toledo, analyzed the chord length distributions (CLD). The soft-

ware divides the chord size from 1 µm to 1000 µm into 100 bins via a logarithmic scale

and generates the chord length histogram for each measurement. The range of experimen-

tal temperature was from 0 to 70 ◦C and every measurement was performed with a constant

stirring rate of 400 rpm.
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Figure 3.1: OptiMax system from Mettler Toledo equipped with probes for focused beam
reflectance measurements (FBRM) and attenuated total reflectance Fourier transform in-
frared (ATR-FTIR) measurements.

3.3.2 Dissolution experiments

Every dissolution experiment was performed in a 250 ml-glass crystallizer with isothermal

conditions. The manipulated conditions in these experiments were the system temperature

and the initial crystal sizes. The paracetamol solution in ethanol with S = 0.95 at the de-

sired temperature was prepared to perform these experiments. Initial solutions were based

on 100 g of ethanol, and the concentration of solution has a unit of g-solute/g-solvent. For

each solution, the system temperature was kept as the desired temperatures, 10, 15, 20,

and 30 ◦C. A specific mass of crystals was introduced in the solution, having a particular

size associated with one sieve tray. The introduced mass of crystals was determined based

on the paracetamol solubility in ethanol to recover the desired mass of remaining crystals.

The time of the introduction of crystals was set as the initial time of the experiment. The

dissolution experiments were completed when the in situ FTIR absorbance maintained a

constant value. After the experiment, the remaining crystals were filtered in vacuo to sep-
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arate ethanol from the paracetamol crystals. Next, the recovered crystals were washed by

toluene because ethanol is soluble in toluene, and paracetamol is insoluble in toluene. The

remaining toluene on the surface of the crystals was evaporated, and the dried crystals were

sieved with 11 size ranges from 0 to 850 µm to analyze the particle size distributions.

3.3.3 Crystallization experiments with temperature cycling

The goal of Chapter 3 is to model unseeded crystallization of paracetamol from ethanolic

solution with a temperature cycling strategy. Unseeded crystallization is also called inter-

nal seeding crystallization because the crystals appear through primary nucleation initially,

and these crystals can then act as seed crystals in the system. Internal seeding is usually

implemented by the continuous cooling profile [35, 39, 128]. However, primary nucleation

is known to have stochasticity, so a temperature plateau was applied to minimize the in-

fluence of the stochasticity in primary nucleation, on the reproducibility of the subsequent

process [18, 19].

The stirring speed in this system was fixed at 400 rpm to minimize bubble formation

while maintaining mass and heat transfer in the system. The initial temperature of the sys-

tem was set at least 5 ◦C higher than the saturation temperature of the initial concentration

so that the initial solution was undersaturated. The system temperature was decreased until

the supersaturation reached the target value, with -1.0 ◦C/min as the cooling rate. The time

when the decrease in temperature begins was considered as the initial time for the model-

ing. Next, the system was kept on the plateau temperature between 60 and 150 minutes,

based on the status of crystals in the solution. The length of the temperature plateau was

determined by the total chord counts using the FBRM and ATR-FTIR. If the total chord

counts were kept nearly constant, we assumed that further nucleation is negligible. The

first appearance and growth of crystals took place during this temperature plateau. After

this step, the temperature-cycling strategy was employed to obtain crystals with different

mean sizes and size distributions. Each experiment had different initial concentrations and
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supersaturations on the temperature plateau. The plateau temperature was determined by

the initial concentration and the target supersaturation. The concentration of paracetamol

in the solution was evaluated based on the in situ ATR-FTIR measurement.

3.4 Experimental results

3.4.1 Observation for agglomeration and breakage

First of all, agglomeration and breakage were observed to determine whether the model

should include these mechanisms. The initial part of the usual experimental procedure was

carried out, and the temperature plateau was kept for 20 hours. If crystals agglomerate or

break in the system, the chord counts should increase or decrease drastically, but signifi-

cant changes are not observed. Even though we can see a slight increase in chord counts

at the end of the observation, the chord counts are kept constant for more than 6 hours

without a change. Moreover, the temperature plateau is employed only for 2 hours, illus-

trated between the black dotted lines. Hence, agglomeration and breakage of crystals were

neglected in this work.
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Figure 3.2: Chord counts profiles for 20-hour experiment with three divided ranges in chord
length distribution
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3.4.2 Temperature plateau and reproducibility

Figure 3.3: Comparison of two experimental cases with the same temperature profile. (a)
non-weighted total chord counts, (b) square-weighted total chord counts, (c) concentration
of paracetamol in ethanolic solution, (d) supersaturation.

As mentioned in the previous section, we employed a temperature plateau to reduce the

influence of the stochasticity of primary nucleation. Two experimental cases with the same

temperature profile were compared to show the effect of the temperature plateau and repro-

ducibility of crystallization. As a result, we can see the stochasticity of primary nucleation

in Figure 3.3. Case 2 shows the change sooner than Case 1 in all plots, even though the tem-

perature plateau begins at the same time. However, we can also see that the non-weighted

and square-weighted total chord counts show similar values at the end of the temperature

plateau. If we manipulate the temperature without a temperature plateau after the crystals

appeared, the crystallization behaviors can show different trends according to the charac-

39



teristics of nucleated crystals, even though the temperature profile is the same. Therefore,

the temperature plateau can reduce the influence of stochastic primary nucleation.

This figure also shows the reproducibility of the crystallization process. The behaviors

of chord counts, concentration, and supersaturation from both experiments have very sim-

ilar trends in all crystallization processes. The non-weighted total chord counts of Case 1

have values larger than those of Case 2 immediately after the crystals appear, but this trend

becomes close to Case 2 at the end of the temperature plateau. The square-weighted chord

counts demonstrate similar values for both experimental cases despite the non-weighted

chord counts having different values immediately after the primary nucleation. This hap-

pens because tiny crystals in the system do not affect square-weighted chord counts as

much. Concentration and supersaturation also have similar trends for the same temperature

profiles.

3.4.3 Results of dissolution experiments

Seven sets of experiments were carried out to investigate the dissolution of crystals. In each

dissolution experiment, the initial undersaturation was fixed as 0.95, so that dissolution

kinetics are observed over a slow enough time scale for quantification. Additionally, the

number of crystals was assumed to be constant during the experiments since the size of the

monodisperse seed crystals is significantly larger compared to the observed reduction in

size during dissolution.

Two variables, temperature and mean size of seed crystals, were manipulated to de-

sign and carry out the dissolution experiments. The temperature affects the dissolution

rate because the dissolution is a type of mass transfer, which depends on temperature. To

observe the temperature dependence of dissolution, experiments were carried out at four

different isothermal conditions—10, 15, 20, and 30 ◦C. Furthermore, the sizes of the seed

crystals were varied since the surface area also influences the dissolution rate. Specifically,

we employed the following three different size ranges—300 – 355, 425 – 500, and 600 –
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Table 3.1: Experimental conditions and results of dissolution experiments

Exp.

Temp.,
T , [◦C]

Initial
crystal
size,
Lini
[µm]

Initial
conc.,
cini

[g-solute
/g-solvent]

Final
conc.,
cfin

[g-solute
g-solvent]

Diff. of
conc.,

∆c = cfin − cini
[g-solute
g-solvent]

mass of
seed

crystals
mseed, [g]

mass of
recovered
crystals
mfin, [g]

Training sets

1 10.0 425 – 500 0.1425 0.1479 0.0054 4.80 4.31
2 15.0 425 – 500 0.1539 0.1618 0.0079 4.85 4.00
3 20.0 300 – 355 0.1672 0.1771 0.0099 4.90 3.66
4 20.0 600 – 700 0.1672 0.1773 0.0101 4.90 3.71
5 30.0 425 – 500 0.2018 0.2154 0.0136 5.10 3.68

Test sets 6 10.0 600 – 700 0.1425 0.1478 0.0053 4.80 4.27
7 20.0 425 – 500 0.1672 0.1773 0.0099 4.90 3.70

710 µm—which were prepared by sieving. These larger sizes were selected to minimize

disappearance of crystals.

The driving force for dissolution in Equation (3.9) is cs−c, the absolute undersaturation.

The initial driving force is expressed as cfin − cini because the measured final concentration

is the solubility in these experiments. The initial and final values of concentration, cini and

cfin, are similar for cases at the same temperature, and thus the total mass of the final crystal

products are nearly the same: In Table 3.1, the mass of remaining crystals, mfin, show

similar values when the temperature is the same, even though the initial size is different.

Figure 3.4 presents the result of dissolution experiments using seed crystals with differ-

ent initial mean sizes at two different temperatures. Figure 3.4(a) shows the dissolution rate

of crystals at 10 ◦C. Two experimental results are compared in this figure: the dissolution of

crystals whose initial sizes are between 425 – 500 µm and 600 – 710 µm. We can observe

that the dissolution rate of larger crystals shows a slower profile than the smaller crystals

for the same experimental condition. In particular, the results at 20 ◦C shown in Figure

3.4(b) have different trends depending on each initial size range of seed crystals. Despite

the initial and final concentrations having similar values, the dissolution for 300 — 355 µm

shows the highest rate between 0 and 10 min. On the other hand, the dissolution rates of

the largest size, 600 -– 700 µm, was the slowest in the same period. This dependence is

expected since the larger crystals have a lower amount of surface area per mass.
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Figure 3.4: Comparisons of concentrations in dissolution experiments with different initial
seed sizes. (a) 10 ◦C and (b) 20 ◦C.

3.4.4 Results of crystallization experiments with temperature cycling

In this study, six experiments were performed, and the conditions and the results are shown

in Table 3.2. The initial concentrations, cini, are between 0.250 and 0.350 g-solute/g-

solvent. The supersaturation values at the plateau temperatures, Sp, are chosen among
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Table 3.2: Conditions and measured results of crystallization experiments

Exp.

Desired
cini

[g-solute
/g-solvent]

Measured
cini

[g-solute
/g-solvent]

Desired
Sp
[-]

Measured
Sp
[-]

Tp

[◦C]

tp

[min]

Tfin

[◦C]

mfin

[g]

L̄4,3,fin

[µm]

Training sets
8 0.300 0.308 1.40 1.41 30.0 120 10.7 15.6 317.4
9 0.250 0.245 1.30 1.27 24.0 150 19.9 7.25 259.7
10 0.350 0.348 1.20 1.18 44.3 150 25.9 14.2 451.7

Test sets
11 0.275 0.282 1.40 1.43 25.0 120 4.8 12.6 258.7
12 0.300 0.299 1.30 1.29 33.2 120 19.1 12.1 391.2
13 0.300 0.300 1.40 1.39 29.6 120 22.9 10.3 309.6

Table 3.3: Comparisons of final crystal mass between by balance and by ATR-FTIR

Exp.
weighed final

crystal mass [g]
final crystal mass
by ATR-FTIR [g]

Error based on
weighing

8 15.6 15.8 1.3%
9 7.2 7.2 0.0%

10 14.2 13.7 -3.5%
11 12.6 13.2 4.8%
12 12.1 11.9 -1.7%
13 10.3 9.8 -4.9%

1.2, 1.3, and 1.4. The plateau temperatures, Tp, were set based on the initial concentration

and target supersaturation during the plateau time, tp. The final mass of recovered crystals,

mfin, was measured after the washing and drying procedures and is related to the initial and

final concentrations by a mass balance. The final volume-weighted mean crystal size, L̄fin,

is estimated using the results of sieving analysis.

Figures 3.5 and 3.6 show the trends of mass of crystals and supersaturation, together

with temperature profiles for all runs. The temporal trends of crystal mass in Figure 3.5

are estimated using the paracetamol concentration in the solution based on the ATR-FTIR

measurements. Differences between values from a mass balance (based on measurements

of solution concentration) and weighing product crystals differed by less than 5%, as shown

in Table 3.3.
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Figure 3.5: Mass of crystal and temperature profile from crystallization experiments. (a)
Exp. 8, (b) Exp. 9, (c) Exp. 10, (d) Exp. 11, (e) Exp. 12, and (f) Exp. 13: blue solid line —
crystal mass in the solution and red dash-dotted line — temperature profile. Ranges of axes
in all figures are fixed based on the largest range among all data sets for easier comparison.
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Figure 3.6: Supersaturation and temperature profile from crystallization experiments. (a)
Exp. 8, (b) Exp. 9, (c) Exp. 10, (d) Exp. 11, (e) Exp. 12, and (f) Exp. 13: blue solid line
— supersaturation and red dash-dotted line — temperature profile. Ranges of axes in all
figures are fixed based on the largest range among all data sets for easier comparison.
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3.5 Results of parameter estimation and model validation

3.5.1 Parameter estimation for crystal dissolution

The method of moments was used to estimate the parameters in the dissolution kinetics

model. The initial conditions for the moments, µ0, µ1, µ2, and µ3, were evaluated by the

mass, size, and volume shape factor of crystals.

Table 3.4: Estimated parameters and confidence intervals for the primary nucleation rate,
secondary nucleation rate, and growth rate of crystals

Parameter Unit Value Confidence interval

Dissolution
rate

kd [(µm/min)(g/g)−γd] -4.08×104 (-4.84 – -3.47)×104

Ead [J/mol] 9.80×103 (9.37 – 10.2)×104

γd [-] 0.929 0.911 – 0.947
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Figure 3.7: Experimental data and fitted result for training sets: blue upward triangle: 462.5
µm and 30 ◦C, red circle: 325.5 µm and 20 ◦C, purple rhombus: 655 µm and 20 ◦C, green
asterisk: 462.5 µm and 15 ◦C, orange downward triangle: 462.5 µm and 10 ◦C, and solid
lines on data points represent the fitted results by model
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Figure 3.8: Experimental data and predicted result for test sets: yellow square: 462.5 µm
and 20 ◦C, purple plus sign: 655 µm and 10 ◦C, and solid lines on data points represent the
predicted results from the model

The estimated parameters for the dissolution based on five experimental data sets are

shown in Table 3.4. Figure 3.7 compares the experimental training data and fitted results,

and Figure 3.8 compares the experimental test data and predicted results.

The obtained kinetic model describes the dissolution of crystals very well. In particu-

lar, the model shows different initial dissolution rates depending on the seed crystal size.

Additionally, this model can predict volume-weighted mean crystal size at the end of the

experiment based on µ4/µ3 in Table 3.5. The final products were sieved to analyze the size

distribution. Table 3.5 compares the volume-weighted mean crystal sizes from experiments

and predictions. The estimated mean crystals show a small error of 1 — 3%.
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Table 3.5: Comparison of experimental and predicted mean crystal sizes from different
temperatures using the same initial crystals (425 – 500 µm)

Temperature [◦C]
10 20 30

Experimental crystal size [µm] 441.0 420.3 405.2
Predicted crystal size [µm] 448.3 430.4 417.8
Error based on the experimental results 1.65% 2.40% 3.11%

3.5.2 Parameter estimation for nucleation and crystal growth

Among six experimental data sets in Table 3.2, the first three experiments were used as the

training set for the parameter estimation and the last three experiments were utilized as the

test set. All crystallization experiments were carried out from clear solutions without any

seed crystals, so the initial number density distributions are set to zero. Because training

sets, Experiments 8 – 10, employed temperature cycling, the model should describe disso-

lution of crystals. Hence, the model used the estimated dissolution kinetic parameters from

Table 3.4.

Due to the high non-linearity of the kinetic models, multiple local minima may exist

in the optimization problem of parameter estimation. For this problem, GlobalSearch

and MultiStart functions in MATLAB™ were applied to identify the global minimum.

The logarithm with base 10 was applied to the rate constants and activation energies such as

kb1, kb2, kg, and Eag , to reduce the searching range of each parameter during optimization.

Table 3.6: Estimated parameters and confidence intervals for the primary nucleation rate,
secondary nucleation rate, and growth rate of crystals

Parameter Unit Value Confidence interval
Primary
nucleation rate

kb1 [#/min/kg solvent] 10.6 9.46 – 12.0
γls [mJ/m2] 3.83 3.01 – 4.65

Secondary
nucleation rate

kb2 [#/min/kg solvent] 1.39×106 (1.27 – 1.52)×106

α [-] 2.39 2.38 – 2.40
β [-] 0.41 0.34 – 0.49

Growth
rate

kg [(µm/min)(g/g)−γg ] 2.264×108 (2.00 – 2.56)×108

Eag [J/mol] 3.62×104 (2.97 – 4.41)×104

γg [-] 1.14 1.00 – 1.27
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Table 3.6 lists the parameters obtained from the optimization, and estimated parame-

ters were compared to previously reported parameters, especially energies and exponents.

In contrast, rate constants such as kb1, kb2, and kg may vary based on the experimental

equipment and conditions. The estimated interfacial energy between paracetamol crystal

and ethanol solution for the primary nucleation is 3.83 mJ/mol, which is 10% less than

4.25 mJ/mol reported by Li et al [19]. The estimated exponents in the kinetic model of the

secondary nucleation, α and β, are 2.39 and 0.41, which have the same order of magnitude

from reported values by Li et al. [19], 2.08 and 0.71. The activation energy and exponent

for crystal growth rate are 36.2 kJ/mol and 1.14. Crystal growth rates of paracetamol from

ethanolic solution were reported from various studies [19, 74, 129], as compared in Table

3.7.

Table 3.7: Comparisons of activation energy and exponent for crystal growth rate

Source Eag [kJ/mol] γg
Worlitschek and Mazzoti [74] 41.6 1.9
Mitchell et al. [129] 40.56 1.602
Li et al. [19] 41.3 1.24
This study 36.2 1.14

The 95% confidence intervals are also estimated in Table 3.6. Confidence interval is

sometimes evaluated from repeating experiments, but this study used the quadratic approx-

imation of Equation (3.17). Therefore, it is noted that the reported values have limitations

since Equations (3.17) and (3.20) approximated the error and sensitivities for this model.

Even though this method may not evaluate sensitivities accurately, it can help to determine

which parameters are sensitive or insensitive in the model.

Figure 3.9 shows an example of comparisons between experimental data and fitted re-

sults from the training set such as trends of supersaturation, crystal mass, and the final

volume density distributions. The fitted trends of supersaturation and mass in Figure 3.9(a)

and (b) show that the estimated parameters can describe the concentration change accord-

ing to the crystallization and dissolution mechanisms. When the temperature profile enters
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Figure 3.9: Comparisons between experimental data and fitted results for the Exp. 8 in
training sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume density distri-
bution, and (d) cumulative volume density distribution.
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Figure 3.10: Comparisons between experimental data and fitted results for the Exp. 11 in
test sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume density distribu-
tion, and (d) cumulative volume density distribution.
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the temperature plateau, the supersaturation shows a little variation by the temperature pro-

file. The generation of crystals is initiated by primary nucleation and is accelerated by

secondary nucleation, so the nucleation mechanisms are critical to establish the model of

an unseeded batch crystallization. Appropriate parameters for nucleation mechanisms tend

to predict when significant nucleation happens on the temperature plateau even though it is

still challenging to describe the primary nucleation exactly due to the stochasticity. Volume

densities at the final stage of the process are compared in Figure 3.9(c) and (d), and we can

see that the estimated parameters depict the development of volume density distributions.

For validation of obtained kinetic models, three experimental runs, Exp. 11 – 13 were

simulated by the model with the estimated parameters, with the conditions of the test sets in

Table 3.2. An example of simulated results for Experiment 11 is shown in Figure 3.10. The

predicted properties regarding solution concentration, supersaturation, and crystal mass, of-

fer a good fit to the temperature cycling stage. However, some disagreement is seen in the

temperature plateau stage, due to the stochasticity of the primary nucleation; however, the

temperature plateau reduces this impact on the subsequent process. Hence, the predicted fi-

nal volume density distributions also show a good agreement with the experimental results.

Other comparisons for training and test sets are in Appendix B.

Table 3.8: Comparisons of final mean crystal size between sieving analysis and simulation

Exp.
volume-weighted mean size

by sieving [µm]
volume-weighted mean size

from simulation [µm]
error based on

experimental results
8 317.4 311.8 -1.8%
9 260.0 279.9 7.6%

10 452.0 507.3 12.2%
11 258.5 274.2 6.0%
12 391.2 352.2 -10.0%
13 309.6 289.3 -6.6%

Table 3.8 lists and compares the volume mean crystal sizes from experiments and pre-

dicted results. The first term in Equation (2.22), L̄43 = ΣniL
4
i /ΣniL

3
i , estimates the

mean crystal size given by the model, and the second term in Equation (2.22), L̄43 =
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Σ(MiLi)/ΣMi, calculates mean crystal size measured in the experiments. Errors between

mean crystal sizes from experiments and simulations range from -10% to +12%, which

may be partly due to inaccuracies associated with the sieving process. Some crystals may

agglomerate during post-crystallization steps such as washing and drying and they may

have led to measurement error in the crystal size distributions of the final product. How-

ever, the errors for the test data are similar to those for the training data, suggesting that the

model is predictive.

3.6 Analyzing the crystallization system through the PBM

3.6.1 Analysis of nucleation, growth, and dissolution rates

In this section, the nucleation rates and crystal growth rate are analyzed to determine which

rate is dominant under which condition, and how they affect the crystallization system. We

can see that the solution concentration begins to be consumed significantly, and the super-

saturation decreases drastically on the temperature plateau for all experiments in Figure

3.6. Moreover, the model and parameters can describe these phenomena. Hence, the simu-

lated results are used to investigate the effect of nucleation, crystal growth, and dissolution

rates on the crystallization system.

The total nucleation rate in this model is considered as the sum of the primary and nu-

cleation rates. Figure 3.11 presents the primary nucleation rate, secondary nucleation rate,

and crystal growth and dissolution rates of Exp. 12 as an example. From the clear solution,

which does not contain any crystals, the primary nucleation is dominant, although the rate

is meager. Due to the low primary nucleation rate, the concentration in the solution seems

not to change at all. In this region, it is still difficult to observe crystals from the solution

experimentally. However, if the initial nuclei from a clear solution grow, the grown crystals

eventually provide enough area for secondary nucleation. This effect is expressed as the

term regarding crystal mass in Equation (3.6). Once the secondary nucleation significantly
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Figure 3.11: Trends of (a) the primary nucleation rate, (b) secondary nucleation rate, and
(c) crystal growth and dissolution rate based on the supersaturation for Exp. 12. The grey
dashed line in Figure (c) represents the saturation level is 1 to compare the saturation in the
solution is supersaturated or undersaturated.
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begins, the supersaturation in the solution decreases drastically due to the much higher

magnitude of the secondary nucleation rate compared to the primary nucleation rate. In

this step, the primary nucleation rate can be ignored due to the difference in magnitudes.

As the supersaturation decreases and approaches 1, the nucleation rates come to near zero,

but the crystal growth rate has values that cannot be ignored even though it becomes lower

than the initial stage of the temperature plateau, where supersaturation has the highest value

in the whole process.
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Figure 3.12: Trends of total nucleation rate according to supersaturation for Exp. 12.
The total nucleation rate is plotted as the logarithm in this figure. The solid orange line
represents the supersaturation of 1.05.

When the solution is undersaturated, there is no more nucleation, and crystals begin

dissolving. While the temperature cycles are employed, the system repeatedly enters the

supersaturated and undersaturated regions. This makes the crystals grow and dissolve.

Secondary nucleation also occurs. The supersaturation level depends on the temperature

rate of change in the crystallizer. If the temperature decreases quickly, supersaturation

reaches a level higher than 1.05, so many new nuclei are generated, depending on the
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supersaturation, although the growth rate also becomes higher. Figure 3.12 shows that

a lower supersaturation than 1.05 can cause nucleation. However, the number of newly

generated nuclei is not significant based on a comparison between the total nucleation rate

with the logarithm with base 10 and the supersaturation in the solution.

This interpretation using the model shows the effect of supersaturation on the nucle-

ation, growth, and dissolution rates. In particular, this analysis shows that supersaturation

greater than 1.05 provides meaningful nucleation rate to generate new crystals for the sys-

tem of paracetamol in ethanolic solution as shown in Figures 3.11(b) and 3.12. Hence,

the model can help to find the optimized temperature profiles to reach the target crystal

attributes in the unseeded batch cooling crystallization.

3.6.2 Effect of temperature cycling on crystal size distribution

Temperature cycling strategies cause changes in crystal size distribution due to repeating

temperature increase and decrease. However, the volume-weighted mean crystal size does

not become larger conspicuously when the temperature cycles in a fixed range as shown in

Figure 3.13 (Exp. 13). In Figure 3.14, the volume-weighted average size reaches a similar

value if the final temperature is the same despite the different temperature paths. As a

result, the final temperature affects the final volume-weighted mean crystal size because

small powders do not influence the total volume or mass of the crystal.

Nonetheless, the small powder makes problems on the industrial processes, especially

for transportation processes and safety. Small particles and fines generate larger Van der

Waals forces of attraction that create adhesion among particles [130], and greater specific

surface area by smaller crystal size causes larger surface resistance [131]. Moreover, crys-

tals with larger mean size and narrower distribution have higher flowability than crystals

with smaller mean size and wider distribution [132]. From the viewpoint of safety, parti-

cles smaller than 500 µm are more likely to generate powder explosion, and the probability

of the accident increases as particulates become smaller [133]. Hence, the trend of mean
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Figure 3.13: Trend of volume-weighted mean crystal size for Exp 13. Dashed black lines
are to compare L̄43 for each temperature cycle. Inset: Zoomed-in profile of oscillation of
trend.

crystal size using number density such as volume mean size [83], L̄30 = (µ3/µ0)1/3, could

be used instead even though fine particles do not affect the total volume of crystals very

much. However, it is challenging to measure the number of powders using sieve trays since

the powder less than 53 µm. If we assume the mean crystal size between the smallest sieve

trays as 26.5 µm, the mass of one particle with crystal density, 1.263×10−12 g/µm, and vol-

ume shape factor, 0.797, is only 1.87× 10−2 µg. Therefore, it can be impractical to detect

the mass of crystals in this tray range according to the resolution of the measurement.

To figure out the influence of temperature cycling on crystal attributes, a case study

was carried out as shown in Figure 3.14. This simulation compares the supersaturation,

mean volume crystal size, volume-weighted mean crystal size, and the number of crystals

for small and entire size ranges. The small size range is from 0 to 55 µm and the entire

size range is from 0 to 1000 µm. The reason that the number of crystals is analyzed for

two size ranges is to determine the impact of the small crystals on the total number of
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Figure 3.14: Crystal characteristics according to temperature profiles with and without
temperature cycling: (a) Supersaturation, (b) mean volume crystal size (L̄30) and volume-
weighted mean crystal size (L̄43), and (c) numbers of crystals less than 55 µm and all ranges
for each case. The numbers, 1 and 2, as subscript represent the case of simulation.
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crystals at the final time step. Case 1 is a reference case, so the temperature profile does

not ever have increasing temperature. In Case 1, the temperature profile begins from 50

◦C and the temperature decreases to the temperature plateau, 30 ◦C, with the decreasing

rate of -1 ◦C/min. The second temperature decreasing begins at 140 min, and temperature

of the second cooling stage decreases to 10 ◦C for 320 min in Case 1. Case 2 employs an

additional heat/cool phase during the plateau period of Case 1. In addition, the temperature

changing was employed once again on the second cooling stage.

In Figure 3.14(a), the maximum supersaturation values at the temperature plateau are

1.4 for both cases, but increasing temperature in Case 2 reduced the supersaturation level

more quickly than Case 1. This operation restrains the development of small particles is less

than 55 µm as shown in Figure 3.14(c); this criterion was chosen because the smallest sieve

tray in this study has pores of 53 µm. Due to this operation, the total number of crystals

in the solution is kept much lower than Case 1 as shown in Figure 3.14(c). As a result, the

mean crystal sizes, L̄30 and L̄43 of Case 2 show larger values than those of Case 1 (Figure

3.14(b)). This simulation can show that temperature cycling promotes fines removal and

that a well-designed temperature profile can optimize the operation of the crystallization

process.

3.7 Summary

A mathematical model for unseeded batch crystallization of paracetamol in ethanol solu-

tions was developed that includes primary and secondary nucleation, growth, and disso-

lution of crystals. Parameters for crystallization and dissolution were obtained separately.

Seven dissolution experiments and six unseeded batch crystallization experiments were

carried out to estimate and validate model parameters.

This model can account for the dissolution and disappearance of crystals when the tem-

perature rises. Therefore, this model can be used to explain and analyze the evolution of

a crystal population density distribution when heating and cooling are part of the crystal-
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lization protocol. In addition, this model analyzed the influence of supersaturation on each

nucleation rate and growth rate. This analysis can provide the temperature profiles that can

be employed to minimize the number of fines during the process and maximize the mean

crystal size through the model.
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CHAPTER 4

OPEN-LOOP CONTROL OF BATCH COOLING

CRYSTALLIZATION THROUGH MACHINE

LEARNING APPROACH UTILIZING TRAINING DATA

FROM THE PBM

4.1 Objectives

In this chapter, the PBM was employed to obtain optimal control policies through the

Markov state model (MSM) and dynamic programming (DP), and the obtained control

policies were validated through simulation and experiment in an open-loop manner. In past

studies, MSM and DP based on experimental measurement have been employed to control

the batch crystallization [50, 51], but these control approaches are sensitive to the quantity

and quality of data sets for the training. To address this problem, collecting an abundant

number of samples is important in this method because more data can provide a better con-

trol policy. Nonetheless, collecting samples takes time and effort. If there exists an accurate

theoretical model, the crystallization dynamics can be simulated instead of performing ex-

periments. The same idea has been employed for other systems [134–136] so that the PBM

was used to generate training sets for empirical models based on the MSM.
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4.2 Exploration for the optimal control policy

4.2.1 Determination of reduced order states

Crystallization processes are highly nonlinear, and various states exist. If the number of

states that are handled by the MSM increases, the size of the transition matrix expands

exponentially so that it takes a longer time to calculate the control policy. In order to make

the MSM more economical, appropriate reduced-order states are required.

Various manipulating factors, such as temperature, pH in the solution, and amount of in-

troduced anti-solvent, can be employed to operate the crystallization process. However, the

purpose of manipulating variables is to adjust the level of supersaturation or undersatura-

tion in the solution to produce or dissolve crystals. To describe the effect of supersaturation

on the crystallization and dissolution, in this study, relative supersaturation is chosen as the

input of the MSM. The relative supersaturation is,

σ(T ) =
c− cs
cs

= S(T )− 1 (4.1)

where c is the current solute concentration [g-solute/kg-solvent], and cs is the solubility of

solute in a unit mass of solvent [g-solute/kg-solvent]. Relative supersaturation has positive

values for the supersaturated condition and negative values for the undersaturated condi-

tion. This attribute can make the MSM has change in the positive direction for nucleation

and growth, change in the negative direction for dissolution and disappearance on the state

space. This is an important constraint for the optimization to determine coefficients of the

MSM.

In this study, the desired control targets are set with the crystal mass and the mean

volume crystal size, L̄30, which can be estimated by Equation (2.23), at the end of crystal-

lization runs. Griffin et al. employed the crystal mass and non-weighted total chord counts

for reduced-order states to estimate the mean crystal size, because mean crystal size cannot
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be measured directly [50, 51]. They constructed an empirical correlation between the mean

crystal size and measurable data, the chord counts and solute concentration, to control de-

sired properties. However, the mean volume crystal size can be estimated by the calculated

zeroth and third moments utilizing the PBM. Therefore, the zeroth and the third moments

were selected as reduced-order states for this study.

According to a study about relationships between moments and chord couts [137], the

total number of crystals in a unit volume can be related to chord counts by the FBRM.

Because the total number of crystals can be shown in µ0, using moments for the reduced-

order states can be conducive to link PBM simulation results with experiments. This work

is necessary to conduct the feedback control based on the measurements, which will be

described in Chapter 5. The third moment, µ3, represents the total volume of crystals in a

unit volume so that the mass of crystals in the system can be determined by µ3, assuming

the crystal density and the volume shape factor are known. The orders of µ0 and µ3 from

the developed PBM are generally larger than 106 and 1012, respectively, and the relative

supersaturation, σ, as the input is smaller than 1. This large differences lead to poor scaling

in the MSM. To avoid this problem, we use scaled moments, µ0 × 10−6 and µ3 × 10−12,

which have similar magnitudes. The reduced-order states are expressed as s1 and s2. The

dynamic state, s, is shown as

s ≡

 µ0 × 10−6

µ3 × 10−12

 =

s1

s2

 (4.2)

and this relationship converts Equation (2.23) as

L̄30 =

(
µ3

µ0

)1/3

= 100

(
s2

s1

)1/3

(4.3)
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4.2.2 Markov state model to describe the crystallization dynamics

A key assumption for this step is that the MSM is memoryless, where the future states at

the next time step depend only on the current states. In former studies [50, 51], a machine-

learning strategy was applied to identify the MSM for the crystallization dynamics based

on measured PAT data, and the obtained model was utilized for the crystallization control.

The MSM for the crystallization dynamics is expressed in discrete-time as

∆sτ = sτ+1 − sτ = F (sτ , στ ) ∆t (4.4)

where τ is the time index, so sτ and sτ+1 are states at time, tτ and tτ+1, respectively, στ

is the relative supersaturation at tτ as the input, and ∆t is the time interval between tτ and

tτ+1. For the function, F (ś, σ), at each position, ś, a sixth-order polynomial of σ with zero

constant was employed to give enough flexibility as below

∆s1
∆t

∣∣∣
ś

= F1(ś, u) = β
[ś]
1,1u+ β

[ś]
1,2u

2 + · · ·+ β
[ś]
1,6u

6.

∆s2
∆t

∣∣∣
ś

= F2(ś, u) = β
[ś]
2,1u+ β

[ś]
2,2u

2 + · · ·+ β
[ś]
2,6u

6.

(4.5)

where β[ś]
i,j denotes the j th coefficient for the ith state at each position, ś. This model has

three constraints below:

1. the saturated condition cannot make any change in the system,

2. supersaturation makes increasing change, and undersaturation makes decreasing change

on the state space, and

3. state change by supersaturation level is monotonic.

The mathematical expression of these constraints on the function, F (sτ , uτ ) are:

1. F (s, u) = 0 if u = 0 ∀s;

2. uF (s, u) ≥ 0 ∀s; and
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3. ∂F/∂u ≥ 0 for a fixed s.

Coefficients for each state, β[ś], were regressed by the locally weighted least-square

scheme following an algorithm in Equation (4.6).

for a given position, ś

β[ś] = argmin
β ∈ R2×6

(
Ntrain∑
j=1

w(ś, ŝj;κ)||[ûj, û2
j , . . . , û

6
j ]β∆t−∆ŝj||22

)

subject to u[u u2 . . . u6]β ≥ 0, ∀u;

[2u 3u2 4u3 5u4 6u5]



β2,1 β2,2

β3,1 β3,2

β4,1 β4,2

β5,1 β5,2

β6,1 β6,2


≥ 0, ∀u.

(4.6)

where Ntrain denotes the number of samples in the training data set, κ is a bandwidth for

determining the size of neighborhood, w(ś, ŝj;κ) is a weight function with κ, and ∆ŝj

means the measured following change in state over the time interval ∆t for the j th training

data set. The coefficient of obtained empirical model from the model training process

changes based on each inquired state of the system. The set of coefficients can be composed

as a matrix and the coefficients are queried to find the change to the next time step to

identify the crystallization dynamics. Even though this model cannot be expressed as a

global model, we can use vector fields to visualize the trained MSM as shown in Figure

4.1.

The optimization problem with constraints as shown in Equation (4.6) was solved using

CVX: a MATLAB package to specify and solve convex optimization [138, 139].
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Figure 4.1: Schematic diagram of the MSM on the state space. The state change from
current state, sτ , moves to the state at the next time step according to the current state and
current supersaturation level, uτ , through the function, F (sτ , uτ ).

4.2.3 Finding the optimal control strategy via dynamic programming

Once the empirical model is established through the MSM, we can find the optimal control

policy by solving a dynamic optimization problem as below:

minimize
uτ = π(sτ )

Φ (sτ=1,...,N , uτ=1,...,N)

subject to sτ+1 = F
(
sτ , uτ = π(sτ )

)
∆t+ sτ , τ = 0, . . . , N − 1;

s0 = sinit;

(4.7)

where Φ is the objective function, π is the state-feedback control policy, N is the desired

batch time, and F is the discrete-time dynamic model, that is the MSM in this study.

The purpose of this control is to produce crystals with specific mean crystal size and

mass. The target mean size in this thesis is defined as mean volume crystal size, L̄30, that

can be evaluated by the two states, s1 and s2. The target crystal mass can be estimated by

the second state (s2), volume shape factor (kv), and crystal density (ρc). The objective of
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this control is making the current states reach the target position on the state space, which

is the desired crystal properties. This objective is achieved by minimizing the distance

between the current state and the target position. The distance-to-target can be estimated

by Equation (4.8):

d(sτ , s
⊕) ≡ (sτ − s⊕)>Q(sτ − s⊕), where Q =

 1 0

0 λ2

 (4.8)

where s⊕ is the target position on the state space, and λ is a scaling factor to normalize the

values of states when they have large differences in the magnitude of values. The range of

s1 is between 0 and 100, and that of s2 is between 0 and 200. Because the ranges for each

state are similar, the λ in this study was set as 1.

Another key point of the control is minimizing the operating cost. Even if the controller

can control the system perfectly, the cost and time must be within a reasonable limit. It is

assumed that the cost is dominated by the effort to heat and cool the crystallizer to bring the

supersaturation and undersaturation to the desired values. Thus, the input-effort function is

defined by the square of supersaturation at each time step to evaluate the absolute value of

σ:

ε(uτ ) ≡ σ2
τ (4.9)

Here, a straightforward formulation of the objective function could consist of the dis-

tance to the target at the final time step and weighted input effort:

Φ (sτ=1,...,N , uτ=1,...,N) = ρ
N−1∑
τ=0

ε(uτ ) + d(sN , s
⊕) (4.10)

However, Equation (4.10) does not enforce the system to settle down at the end of the

operation. To resolve the problem, we distinguished the distance-to-target function with

running and terminal costs: (tτ/tN)γd(sτ , s
⊕) is the running cost term and d(sN , s

⊕) is the
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terminal cost term. Based on this idea, the objective function is formulated as:

Φ (sτ=1,...,N , uτ=1,...,N) =
N−1∑
τ=0

{(tτ/tN)γd(sτ , s
⊕) + ρε(uτ )}+ d(sN , s

⊕) (4.11)

where γ is a parameter to adjust the final approach of the control. If the time-varying

term has a small value of γ, the value of (tτ/tN)γ is enforced to reduce quickly, which

approaches the target from the beginning. In contrast, a large γ leads to a mild controller

action where more deviation from the target is allowed at the beginning of the run.

Finally, the optimization problem is formulated as follows:

minimize
uτ = π(s)

N−1∑
τ=0

{(tτ/tN)γd(sτ , s
⊕) + ρε(uτ )}+ d(sN , s

⊕)

subject to sτ+1 = F
(
sτ , uτ = π(sτ )

)
∆t+ sτ , τ = 0, . . . , N − 1,

s0 = sinit.

(4.12)

To apply dynamic programming to solve the optimization problem given by Equation

(4.12), the state space and input variables are discretized, and the function, F , is converted

into the cell-to-cell mapping from point-to-point mapping [140, 141]. If the state values

are in a discretized area, all values are represented by the center point of the grid. Figure

4.2 illustrates the difference between two mapping approaches. Any values in a square in

Figure 4.2(b) are represented by the center point of the square. S is as set of the center

points of the discretized state space, and U is a set of discretized inputs. The states in the

cell-to-cell mapping are

sτ+1 = C(sτ , uτ ,∆t) ≡ argmin ||sτ+1 −
(
F (sτ , uτ )∆t+ sτ

)
||22

sτ+1 ∈ S
, (4.13)

where C represents the current position in the grid, sτ ∈ S, with the input, uτ ∈ U , over
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the time step ∆t.
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Figure 4.2: Comparison between (a) point-to-point dynamics and (b) cell-to-cell mapping.

Table 4.1: Dynamic programming algorithm for solving optimization problem using Equa-
tions (4.12) and (4.13)

Dynamic Programming Algorithm Optimal Control Policy

set VN(sN) = d(sN , s
⊕) for each sN ∈ S

for τ = N − 1, . . . , 0

for each s ∈ S

φ∗τ (s) ≡ u∗τ |s = arg min
uτ∈U

{(tτ/tN)γd(s, s⊕) + ρε(uτ ) + Vτ+1(sτ+1)}

subject to sτ+1 = C
(
s, uτ ,∆t

)
;

and

Vτ (s) = (tτ/tN)γd(s, s⊕) + ρε
(
u∗τ |s

)
+ Vτ+1

(
C
(
s, u∗τ |s,∆t

))
.

combine to construct the optimal control policy

π∗ = {φ0(s), . . . , φN−1(s)}

Note: the optimization problem posed at each step and state can be solved using the look-up table obtained
by the cell-to-cell mapping.
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The Bellman equation solves the optimization problem given by Equation (4.12) for the

discretized input and state variables, as well as for the discretized time steps according to

the dynamic programming algorithm in Table 4.1. Each reduced-order state has 101 grids

of the same size, so the state space contains 10,201 squares in Figure 4.2(b). The set of

inputs, uτ ∈ U , is from -0.05 to 0.50 with a spacing of 0.025, and ∆t is 30 seconds. The

solutions, which are the supersaturation setpoints for each state at a given time, are stored

in a look-up table, where the dimension of the look-up table depends on the numbers of

discretized grids of states and time steps. Temperature, which is the manipulated variable

in the crystallization system, is determined by the chosen supersaturation found from the

look-up table and the solubility of the system.

4.3 Training set generation using the PBM

To collect the data points for the training set, 6,000 simulations were conducted for the

crystallization with the initial concentrations of 300 g-solute/kg-solvent. Half of the simu-

lation cases were for unseeded and the other were for seeded crystallization. For unseeded

crystallization simulations, the range of supersaturation at the temperature plateau in each

run is set between 1.20 and 1.40, as verified experimentally in the previous chapter. In or-

der to develop the mean volume crystal size, the temperature cycling strategy was applied.

In this strategy, the minimum and maximum temperature in temperature cycles, which use

Tmax, Tmin,∆Theat, and ∆Tcool, temperature changing rates, Rheat and Rcool, and the num-

ber of cycles, Ncycle, were randomly determined in each simulation run. The randomly

generated temperature profiles follows profile structures shown in Figure 4.3 for unseeded

crystallization and Figure 4.4 for seeded crystallization. Table 4.2 shows ranges of values

for each parameter to determine the temperature profile for the simulations.

The initial temperature for unseeded crystallization was set to keep the solution under-

saturated. On the other hand, the initial temperature for seeded crystallization was deter-

mined lower than the saturation temperature of the solution to prevent the dissolution of
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Figure 4.3: Randomly generated temperature profile scheme for unseeded crystallization
simulation for the training set

Tini

Tp

Rheat

Rcool

Ncycle

Tmax

Tmin

DTheat

DTcool

DTheat

DTcooltp

Rcool,ini = -1.0 ℃/min

Heating

Cooling

Temperature plateau

Temperature indication

Time [min]

T
em

p
er

a
tu

re
 [
℃

]

𝑺𝑻𝐢𝐧𝐢 ≥ 𝟏

DTheat

DTcool

Figure 4.4: Randomly generated temperature profile scheme for seeded crystallization sim-
ulation for the training set

seed crystals at the initial stage. In the seeded crystallization simulations, the seed crys-

tal size distribution can affect the final attributes of the crystallization process so that seed

crystal distributions, which follow log-normal distributions, were randomly generated for

each simulation case.
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Table 4.2: Ranges of condition for random simulation to obtain training data set

Symbol Unit Meaning Range
c0 g/kg initial concentration 300
T0

◦C initial temperature T0 = 50
Tp

◦C temperature at the plateau 25 < Tp < 44
tp min time of the plateau tp = 120
Tmax

◦C maximum temperature of the first cycle Tp + 1 <Tmax <Tp + 4
Tmin

◦C minimum temperature of the first cycle Tp − 4 < Tmin < Tp − 1

Rheat
◦C/min

heating rates in cycle
(constant for all cycles) 0.2 < Rheat < 1.0

Rcool
◦C/min

cooling rates in cycle
(constant for all cycles) 0.1 < Rcool < 1.5

Rcool,0
◦C/min cooling rates to the temperature plateau

Rcool,0 = −1.0
(constant for all cases)

∆Theat
◦C

variation of maximum temperature on each cycle
(constant for all cycles) 0.5 < ∆Theat < 1.5

∆Tcool
◦C

variation of minimum temperature on each cycle
(constant for all cycles) 0.5 < ∆Tcool < 2.5

Ncycle - number of temperature cycles 1 < Ncycle < 15

Around 2 million data points were collected from the 6,000 simulations in total. Es-

timated data were screened by criteria for entire data points to remove meaningless data

points on the MSM training. In cases of unseeded crystallization, data points at the ini-

tial stage of the temperature plateau prior to significant nucleation and growth have state

values are zero due to the lack of crystals, and these points were rejected. After the screen-

ing, 50,000 data points from the unseeded crystallization cases and 50,000 points from the

seeded crystallization cases were randomly extracted for the current states, sτ , the state

changes, ∆s = sτ+1 − sτ , and the supersaturation, σ. The time interval, ∆t, is fixed as 30

seconds in the simulation.

Figure 4.5 shows the randomly selected data points for the training set. Each plot in

Figure 4.5 illustrates crystallization and dissolution data points from unseeded and seeded

simulations. Data points in Figure 4.5(a) are dense between 0 and 30 for s1 because the un-

seeded crystallization begins from a clear solution where s1 = 0 and s2 = 0. The most data

points for unseeded crystallization in Figure 4.5(a) and (b) are concentrated in a specific

range of the state space, especially between 0 and 40 for s1, since the initial development
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of crystals occurs at the temperature plateau with narrow ranges of reduced-order states.

If only data points in Figure 4.5(a) and (b) are used in the MSM training, the reduced-

order states at the region without data points in the state space should be extrapolated, and

the model prediction may be inaccurate. To resolve this issue, the seeded crystallization

was simulated using randomly generated seed crystal distributions, and these points fill the

empty space in the state space. The data points from seeded crystallization simulations are

shown in Figure 4.5(c) and (d).

Figure 4.5: Distributions of chosen sample points for the MSM training set: (a) crystalliza-
tion data points from unseeded cases, (b) dissolution data points from unseeded cases, (c)
crystallization data points from seeded cases, and (d) dissolution data points from seeded
cases.
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4.4 Investigation and validation of optimal control policies

4.4.1 Validation of obtained control policy using the PBM simulation

The MSM was trained with 100,000 training data points in Figure 4.5 to describe the crys-

tallization and dissolution of paracetamol in ethanolic solution. Figure 4.6 visualizes the

change from each state, depending on combinations of states and the input level. The ver-

tical and horizontal directions of arrow represent the changes of the mass and the total

number of crystals, respectively. In Figure 4.6(a) – (d) that have positive supersaturation,

it can be seen that the arrows point up and to the right, and the lengths of arrows become

longer at higher supersaturation. This is because existing crystals lead to secondary nucle-

ation and crystal growth, which are faster at higher supersaturation. In the undersaturated

conditions of σ = -0.05 and -0.025, on the other hand, the arrows point to the downward and

left-hand side which indicate dissolution and disappearance of crystals as shown in Figure

4.6(e) and (f). By changing σ, the trajectory can be manipulated for crystallization control.

The target mean volume size, L̄30, and the target crystal mass for the control can be

indicated on the state space as a point according to Equation (4.3), L̄30 = 100× (s2/s1)1/3.

The estimated mean volume crystal size from the simulation is defined by Equation (2.23),

which can be obtained using the reduced-order states. The mass of crystals in the crys-

tallization system is defined as Equation (2.11). The values of kv and ρc in this study of

paracetamol are 0.797 and 1.263 × 10−15 g/µm3. The target µ3 and µ0 were calculated by

inverting the Equations (2.11) and (2.23), respectively, based on the target mass and target

mean volume size.

To acquire optimal control policies employing the MSM and DP in the unseeded batch

crystallization employing a temperature plateau, the policy obtaining process did not start

at the origin representing the clear solution but at a specific point in the state space. The

main reason for this approach is reducing the stochasticity of primary nucleation that hap-

pens in the crystallization experiment. Even though the control approach using the MSM

73



Figure 4.6: Visualization of the MSM, F (s, σ), at different supersaturation conditions.
Arrows represent the change of crystals over a 30-second interval predicted by the MSM.
Subplots from (a) to (d) show changes in the state space when crystallization happens, and
subplots (e) and (f) illustrate changes while dissolution occurs.
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and DP can provide the temperature profile to produce crystals with desired properties, the

obtained control policy cannot reflect the stochasticity since the training set for the MSM

was from the simulation by the PBM that has deterministic characteristics. In Chapter 3, a

temperature plateau was implemented to reduce the effect of the stochastic characteristics,

and the experimental data showed the measurements by PAT tools at the end of the temper-

ature plateau have similar values for repetitive experiments. However, because the MSM

and DP approach cannot implement the temperature plateau naturally, the initial states for

control were defined by the PBM simulation. The simulated states employing a tempera-

ture plateau by the PBM were used as the beginning point to obtain optimal control policy

through the MSM and DP in this study. An example of the internal seeding application
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Figure 4.7: States and control profiles obtained by the MSM and DP for target mean volume
size of 225 µm and target mass of 15 g: (a) predicted trajectory of states for optimal open-
loop control toward the target, (b) predicted distance to the target, (c) optimal temperature
profile, and (d) profiles of optimal supersaturation set point
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Table 4.3: Comparison among targets, predicted results by the obtained optimal policies,
and the PBM simulation results

L̄30 [µm] m [g] s1 s2

√
dfin

Case 1
Targets 225.0 9.0 7.8 89.4 -
Final results by MSM and DP 220.7 9.0 8.3 89.1 0.080
Final results by PBM 199.5 8.4 10.5 83.4 6.5

Case 2
Targets 200.0 9.0 11.2 89.4 -
Final results by MSM and DP 202.9 9.0 10.7 89.3 0.064
Final results by PBM 208.3 9.5 10.6 95.5 6.1

Case 3
Targets 175.0 7.0 13.0 69.5 -
Final results by MSM and DP 178.0 7.0 12.4 69.8 0.18
Final results by PBM 163.2 7.5 17.1 74.5 6.5

Case 4
Targets 160.0 8.0 19.4 79.5 -
Final results by MSM and DP 162.0 8.0 18.8 79.7 0.21
Final results by PBM 100.2 8.8 86.4 86.9 67

is shown in Figure 4.7. In Figure 4.7(a), the trajectory begins from a point, s1 = 5.83

and s2 = 64.6, that is the reduced-order state at the end of a temperature plateau for 120

minutes. The control policy was obtained through the dynamic programming algorithm in

Table 4.1 from this point. Therefore, the time axis in Figure 4.7(b) – (d) represents the

time after the temperature plateau finished. Optimal supersaturation profiles were explored

by the MSM and DP and Figure 4.7(d) shows the optimal supersaturation profiles to reach

target. The states trajectory and the distances between current state at each time step, τ , and

target state were evaluated and illustrated in and Figure 4.7(a) and (b), respectively. The

temperature profile was estimated by the optimal supersaturation and state at each time

step, and it is shown in Figure 4.7(c).

Using the MSM and DP method which were confirmed to provide the optimal control

policy to produce crystals with desired states, four control cases were considered to test

whether the PBM can simulate the crystallization processes using the temperature profiles

from DP. Table 4.3 shows the four target mean volume size and the mass of crystals. The

target reduced-order states that are estimated by the target size and mass are also in Table

4.3. Furthermore, Table 4.3 compares the results by the MSM and DP and results of the

PBM simulation.
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Figure 4.8: States and control profiles obtained by the MSM and DP for Case 1: target
L̄30 = 225 µm andm = 9 g, (a) predicted trajectory of states for optimal open-loop control
toward the target, (b) predicted distance to the target, (c) optimal temperature profile, and
(d) profiles of optimal supersaturation set point. Lines and markers in dark blue color are
results using the MSM and DP approach, and lines in light red color are from the PBM
simulation, respectively.
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Figure 4.9: States and control profiles obtained by the MSM and DP for Case 2: target
L̄30 = 200 µm andm = 9 g, (a) predicted trajectory of states for optimal open-loop control
toward the target, (b) predicted distance to the target, (c) optimal temperature profile, and
(d) profiles of optimal supersaturation set point. Lines and markers in dark blue color are
results using the MSM and DP approach, and lines in light red color are from the PBM
simulation, respectively.

The final reduced-order states given by the MSM and DP are close to target values. The

square root of the final distances-to-target,
√
dfin, in Table 4.3, by the MSM and DP are

less than 0.5. However, the final results from the PBM simulation show longer distances

between the final and target positions. In particular, Case 4 shows the distance of 67, which

is very far from the target states. In Case 4, the final s2 by the PBM has around 10% error,

but the final s1 shows a value longer than the target.

Figures 4.8 – 4.11 compare the profiles of states,
√
dfin, temperature, and supersatura-

tion between the MSM and DP approach and the PBM for test cases. In each figure, panel

(a) presents the trajectories of reduced-order states on the state space, panel (b) shows the

trend of
√
dfin from the current state, panel (c) shows temperature profiles, and panel (d)
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Figure 4.10: States and control profiles obtained by the MSM and DP for Case 3: target
L̄30 = 175 µm andm = 7 g, (a) predicted trajectory of states for optimal open-loop control
toward the target, (b) predicted distance to the target, (c) optimal temperature profile, and
(d) profiles of optimal supersaturation set point. Lines and markers in dark blue color are
results using the MSM and DP approach, and lines in light red color are from the PBM
simulation, respectively.

compares the supersaturation profiles from DP and the PBM. In these figures, the dark blue

lines and marks represent the results from the MSM and DP approach, and the light red

lines and marks show the results by the PBM. The DP approach in Table 4.1 employed the

estimated reduced-order states at the end of the temperature plateau using PBM simulation

results as the initial reduced-order states; thus, the dark blue trajectories in panel (a) begin

from specific positions on the state space. However, the light red trajectories in panel (a)

start from the origin because the PBM simulations implemented the temperature plateau.

The PBM simulations implemented the temperature profiles from the DP approach, so

the temperature profiles in each case perfectly overlapped, as shown in each figure (c).

Simulated supersaturation profiles by the PBM are also compared to the obtained optimal
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Figure 4.11: States and control profiles obtained by the MSM and DP for Case 4: target
L̄30 = 160 µm andm = 8 g, (a) predicted trajectory of states for optimal open-loop control
toward the target, (b) predicted distance to the target, (c) optimal temperature profile, and
(d) profiles of optimal supersaturation set point. Lines and markers in dark blue color are
results using the MSM and DP approach, and lines in light red color are from the PBM
simulation, respectively.

supersaturation profiles in panel (d) of each figure.

Among four cases in Table 4.3, PBM simulations for three cases excluding Case 4

reach near the target states. However, even PBM simulations for all cases cannot reduce

the distance-to-target to less than 1 at the end of the simulation due to the deviation from

the predicted behaviors given by the MSM and the PBM. The MSM used predicted results

by the PBM for the training set, but the MSM simplified the input and output in the model

using a six-order polynomial function. Furthermore, the predicted movements on the state

space by both models can be similar but may not be the same because the MSM uses

reduced-order states to explain the crystallization process. Even though the mean crystal

sizes by the PBM simulation have errors from the target sizes, the results of the crystal
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mass show good predictions. The predicted mean volume crystal size and mass have errors

less than 10% from the target for Cases 1, 2, and 3. Moreover, the profiles of optimal

supersaturation by the MSM and DP and simulated supersaturation profiles for these three

cases show very similar behaviors as shown in panel (d) of Figures 4.8 – 4.10.

However, the PBM does not predict crystallization of Case 4 as shown in Figure 4.11.

In Figure 4.11(a), s1 increases rapidly, where the trajectory goes to right-hand side on the

state space. This means that nucleation is more significant than crystal growth in this con-

dition. The supersaturation level lower than 1.05 (here, σ < 0.05) affects the growth rate

more than the secondary nucleation rate, but as the supersaturation level becomes higher,

the secondary nucleation rate increases, as mentioned in Section 3.6.1. In Figure 4.11(d),

we can see the predicted supersaturation level by the PBM increases higher than 0.7, even

though the optimal supersaturation is less than 0.5. After the temperature plateau ended,

the suddenly increased supersaturation level produces numerous nuclei, which makes in-

creasing s1 in Figure 4.11(a). This mismatching of supersaturation prediction between the

MSM and the PBM led to farther than 65 of the square root of the final distances-to-target,
√
dfin, at the end of the process.

4.4.2 Experimental validation of obtained control policy

The obtained optimal control policies in this chapter tend to be predicted by the PBM

excluding examples with specific conditions, but which is expected because the MSM is

trained using the PBM simulation results. Therefore, the experimental validations are nec-

essary through the open-loop control. Four crystallization experiments with the obtained

temperature profiles from previous simulations were carried out. The temperature profiles

presented as red lines in Figures 4.8 – 4.11 were implemented in the experimental equip-

ment.
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Figure 4.12: Flowchart to show the experimental implementation of the obtained tempera-
ture profile for the open-loop control
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Experimental method: The open-loop control experiments were carried out by follow-

ing the steps indicated in Figure 4.12. The experiments are prepared according to the

method described in Chapter 3, and the determination and implementation of the temper-

ature profile are explained here. In the first step, the desired targets, including the mean

volume crystal size and crystal mass, are chosen. Next, dynamic programming determines

the optimal temperature profile to generate crystals that satisfy the target at the end of the

process. The obtained temperature profile was input to the control software, iControl™,

manually since the open-loop control does not take any feedback signal during the pro-

cess. After finishing all steps, the crystallization experiment is carried out. The post-run

procedures such as washing and drying of the crystals are described in Chapter 3.

The recovered crystals were sieved and weighed. The number densities in each sieve

tray were approximated based on the measured mass of crystals and the mean size of crys-

tals. The crystal mean sizes were assumed to the geometric average of pore sizes of upper

and lower sieve trays. Finally, the mean volume size, L̄30, was obtained by Equation (2.23).

Experimental results. Experimental results for the four cases are presented in Table 4.4.

This table compares the targets, experimental results through sieving and weighing recov-

ered crystals, and the PBM simulation results using the measured temperature profiles from

experiments; thus, the PBM simulations in Table 4.3 and Table 4.4 shows different results.

To compare the experimental results and targets, final states and distance-to-target of re-

covered crystals were evaluated from the sieved mean volume size and weighed crystal

mass.

In Table 4.4, the weighed masses of recovered crystals are near the target within errors

of 10%. However, the mean volume sizes by sieving analysis tend to be smaller than the

target size. The smaller obtained mean volume crystal sizes than target L̄30 values make

s1 values much larger from the targets according to Equation (4.3), so values of
√
dfin in

Table 4.4 are larger than 4, which is larger than criteria, for all experimental results. On
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Figure 4.13: Comparison of open-loop control results for Case 1: (a) supersaturation, (b)
crystal mass in the solution, (c) volume density distribution, and (d) cumulative volume
density distribution.
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Figure 4.14: Comparison of open-loop control results for Case 4: (a) supersaturation, (b)
crystal mass in the solution, (c) volume density distribution, and (d) cumulative volume
density distribution.
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the other hand, the PBM simulation results have closer values of
√
dfin than experimental

values excluding Case 4. In Cases 1, 2, and 3, the predicted mean volume sizes have errors

of smaller than 15%, and these results are similar to the simulation results in Table 4.3.

However, the simulation result for Case 4 have values of
√
dfin longer than 90 which means

the control is not effective.

To analyze what happened during open-loop controls, two examples, Cases 1 and 4, are

compared in Figures 4.13 and 4.14 for trends of the supersaturation (Figure (a)), mass of

crystals (Figures (b)), and volume density distribution of crystals in two different ways as

shown in Figures (c) and (d). Figure 4.13 shows that PBM can predict the experimental

results very well. In particular, the simulated bulk density distribution results agree well

with the sieve analysis data. On the other hand, trends of simulated supersaturation and

crystal mass of Case 4 in Figure 4.14 do not follow experimental data. Especially, the

Table 4.4: Results comparison among targets, experimentally sieved and weighed recov-
ered crystals, and the PBM simulation using measured temperature profiles from open-loop
experiments

L̄30 [µm] m [g] s1
* s2

*
√
dfin

*

Case 1

Targets 225.0 9.0 7.8 89.4 -
Sieved and weighed results 168.6 8.2 16.9 81.2 13
The PBM results with
experimental temperature profile 193.0 8.5 11.7 84.3 7.4

Case 2

Targets 200.0 9.0 11.2 89.4 -
Sieved and weighed results 127.8 9.3 44.0 91.9 33
The PBM results with
experimental temperature profile 209.2 10.0 10.9 99.9 9.3

Case 3

Targets 175.0 7.0 13.0 69.5 -
Sieved and weighed results 132.0 7.4 31.8 73.2 19
The PBM results with
experimental temperature profile 165.3 7.4 16.2 73.2 4.2

Case 4

Targets 160.0 8.0 19.4 79.5 -
Sieved and weighed results 136.2 8.2 32.3 81.6 13
The PBM results with
experimental temperature profile 91.3 8.4 109.6 83.3 90

* Note: Final states and square root of distances, s1, s2, and
√
dfin, in this table are evaluated

based on the measured and simulated L̄30 and m.
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predicted supersaturation between 150 and 200 minutes is much higher than the measured

supersaturation as shown in Figure 4.14(a). This result is very similar to the supersaturation

trends in Figure 4.11(d). The unpredictable supersaturation and crystal mass profiles seem

to be caused by the steep temperature change rate and low temperature near -10 ◦C that is

not experimentally validated in Chapter 3.

Limitation of open-loop control experiments. The reduced-order state, s1, cannot be

calculated directly from FBRM and ATR-FTIR measurements. Even though the crystal

mass can be estimated by in situ measurement of the IR spectrum, the number of crystals

cannot be determined by any PAT tools. It is a limitation that s1 of the open-loop control

experiments could not be monitored in real-time. If the in situ mean volume size can be

measured directly, s1 can be evaluated, but that is also not possible. Therefore, the real-time

trends of s1 and d were not observed.

For open-loop experiments, the experimental system used the temperature profile ob-

tained with the MSM and DP approaches, but the temperature control system has a re-

sponse delay; thus, the experimental system could not control the temperature equal to the

obtained optimal temperature profile. Figure 4.15 compares temperature profiles from the

MSM and DP approaches and experimentally measured temperature profiles for all cases.

In all cases, we can see the manipulated temperature profiles in the experimental equipment

takes longer times than the optimal temperature profiles. Moreover, cases with more rapid

temperature change rates and many cycles, such as Cases 3 and 4, show longer delays.

Also, due to the open-loop control nature, the control variables cannot be adjusted because

the control system does not have any feedback response according to the monitored results.

4.5 Summary

The PBM simulation generated data points for the training set to obtain optimal control pol-

icy through the MSM and DP. The obtained control policies were stored, and the optimal
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Figure 4.15: Comparison of temperature profiles for (a) Case 1, (b) Case 2, (c) Case 3, and
(d) Case 4. Blue solid lines and red dotted lines represent temperature profiles from the
MSM and DP and experimentally measured temperature profiles, respectively.

supersaturation trend to produce desired crystals was chosen by an optimization procedure.

Since the supersaturation is controlled by the temperature manipulation in this project, the

obtained supersaturation trends and the solution concentration estimate the optimal tem-

perature profile to control the crystallization. The optimization procedure by DP provides

selected test cases in Table 4.3, where the obtained temperature profiles were tested by the

PBM simulations and experimental open-loop control.

The PBM simulations for Cases 1, 2, and 3 predicted good mean volume crystal sizes

and crystal masses, but the simulation for Case 4 predicted a value of s1 that is four times

larger. For the simulation using the measured temperature profile for Case 4, the mismatch

result on s1 is also shown. The results of open-loop control experiments have errors less

than 10% for crystal masses, but the mean volume sizes are smaller than the target sizes for
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all cases. However, the implemented temperature profiles into the experimental equipment

have response delays, where the length of processing time in experiments is longer than

the operation time by the optimization. This limitation of inaccurate open-loop control

results concludes that a feedback control scheme is required to obtain crystal properties

close to the target. However, s1 should be determined for the feedback control utilizing

the approach that is introduced in this chapter, so an in-situ monitoring technique for s1 is

necessary to realize the feedback control.
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CHAPTER 5

CORRELATION BETWEEN MEASUREMENTS AND

PBM SIMULATION TO REALIZE THE FEEDBACK

CONTROL

5.1 Objectives

In this chapter, a shallow neural network (SNN) model was developed to convert the mea-

surement by the FBRM to the first reduced-order state (s1 = µ0 × 10−6) for crystal size

control. Chapter 4 demonstrates that obtaining a control policy for the crystallization con-

trol was made possible by the training data set using the PBM simulation, but it also

shows limitation of the open-loop control. Feedback control can be employed to over-

come the weakness of the open-loop control. The crystallization control in this thesis uses

the reduced-order states from the PBM simulation, but the reduced-order states cannot be

measured by PAT tools directly. Because the only measurable data available from experi-

ments are chord length distribution given by the FBRM and the concentration information

given by the ATR-FTIR, a model is required to convert the measured data to reduced-order

states. This chapter shows the steps to determine the correlation between the measured data

and simulated results by the PBM using statistical and machine learning approaches.

5.2 Investigation into relationships between crystal size and chords

The crystallization control through MSM and DP uses two states that are defined by s1 =

µ0×10−6 and s2 = µ3×10−12. The zeroth and third moments are from the PBM prediction.
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The third moment can be directly estimated from the crystal mass in the solution with

assumptions that the volume shape factor and density of crystal are constant, so s2 can be

converted from the measured concentration by the ATR-FTIR. However, the zeroth moment

cannot be evaluated using the measured data directly, and thus the conversion model in this

chapter is necessary to determine the reduced-order state, s1, which relates to the zeroth

moment that represents the total number of crystals in a unit volume.

The FBRM measures in situ characteristics of particulates in the solution, but the col-

lected data do not perfectly represent the crystal attributes. As explained in Chapter 2,

measured data by the FBRM are chord counts of various lengths. Even though a small

crystal can generate short chords, a large crystal can simultaneously make long and short

chords. In particular, the measured CLD is highly dependent on the crystal shape, so con-

version methods are necessary to determine the particle properties. The chord lengths and

counts are assumed to be related to particle size, shape, and numbers, respectively. Hence,

the relationship between measured data and predicted attributes of particles must be found

to control the crystallization system based on the model prediction.

The measured CLD data can be processed as weighted chord length distributions.

Weighted chord length distribution and weighted chord count emphasize the measured

CLD in the bin of longer chords due to the multiplication of chord lengths to the raw

counts. Higher-order weighted chord counts reduce the effect of shorter chords and am-

plify the impact of longer chords. The weighted chord count defined by the manufacturer,

Mettler-Toledo, is shown below.

Cγ =
N∑
i=1

C0,i
Mγ

i

N∑
j=1

Mγ
j

N (5.1)

where C0 and C2 are non-weighted and square-weighted chord counts, respectively. M

is the mid-point of each bin in the FBRM measurements, i is the index of each bin, γ is

the weight for the attribute, and N is the number of bins in the FBRM measurements. For
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example, the square-weighted chord count is given by γ = 2 in Equation (5.1).

At the initial stage of this project, a model to convert moments to chord counts was

investigated to confirm the chord counts are related to the moments. For this study, the

estimated moments by the PBM were used as input, and the non-weighted and square-

weighted chord counts were used as the output of the relationship. Experimental data by

Li et al. [19] were adapted for this work. The square-weighted chord count in this study

shown below has a slightly different definition from Equation (5.1).

The difference between Equations (5.1) and (5.2) is only the presence or absence of the

term for the sum of the number of bins and the weighted bin size. However, those values

are constant for all measurements in this paper, so the values calculated in both equations

are proportional.

C+
2 =

N∑
i=1

C0,iM
2
i (5.2)

The non-weighted and square-weighted chord counts were modeled using the zeroth,

first, second, and third moments as given below:

C+
γ =

3∑
i=0

ai,γµ
αi,γ
i , γ = 0, 2 (5.3)

where subscript i is the ith moments, and a and α are the proportional and exponential

coefficients for each moment, respectively. The parameters, ai,k and αi,k, were estimated

with minimizing by the least square method.

As a result of the parameter estimation, the parameters, ai,γ and αi,γ , that appear only

in the zeroth moment have non-zero values in both cases. This result indicates that the

total chord count is strongly correlated to the number of crystals in the system as calculated

by the PBM. The R2 values for both cases are 0.869 and 0.943, respectively, and Figure

5.1 compares the experimental data and fitted results. In Figure 5.1(a), the non-weighted

chord counts have a large difference among experimental measurements for the same zeroth
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Figure 5.1: Plots for total chord counts versus the zeroth moment, (a) for non-weighted
total chord counts, and (b) for square-weighted total chord counts. Solid lines represent
experimental data and the dashed line shows the model prediction.
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moment by the PBM model. On the other hand, the square-weighted total chord counts

show smaller variations for the zeroth moment among the three experimental data as shown

in Figure 5.1(b). This result shows the zeroth moment has a stronger relationship with

the square-weight total chord count than the non-weighted chord count, and it is likely to

provide a more reliable prediction of the zeroth moment.

Even though the result gives a clue for a conversion model between measurements and

prediction, this model has two limitations: 1) The inputs and outputs of the correlation are

the opposite of the desired model, and 2) higher accuracy is necessary for the feedback

control. For the feedback control, the measured data by the PAT tools should be converted

to the reduced-order state, s1, but this model’s input is the zeroth moment and output is

the chord count. Hence, this correlation cannot be used directly for the feedback control

of the crystallization. Moreover, the conversion model requires higher accuracy to evaluate

the reduced-order state, s1, for more effective and efficient feedback control, so the next

section shows the steps to select predictors for a better model.

5.3 Selection of predictors

In the previous section, the result shows that the moments of crystals are related to the chord

counts measured by the FBRM, but the model has limitations for the feedback control.

In addition, non-weighted and square-weighted total chord counts dilute the properties of

measured CLD. The same non-weighted or square-weighted chord count may correspond

to different CLD because total chord count is a merged attribute, regardless of the chord

length. Figure 5.2 shows an example of this case. The red circle in Figure 5.2(a) covers two

monitored data points. One point is for crystallization period (at 63 min) and the other point

is for dissolution region (at 85 min). Even though these data points have very close crystal

mass and square-weighted total chord counts each, non-weighted CLD (Figure 5.2(b)) and

square-weighted CLD (Figure 5.2(c)) of these two data points are obviously different. This

example shows that using only the total chord counts for neither the non-weighted nor the
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Figure 5.2: Comparison of chord length distributions for very close experimental data
points on the mass-count space: (a) trajectory of an experiment on a mass-count space,
the chord count is square-weighted, (b) comparison of non-weighted chord length distri-
butions for the data points at 63 min and 85 min, and (c) comparison of square-weighted
chord length distributions for the data points at 63 min and 85 min. For (b) and (c), left
figures show original distributions and right figures show cumulative distributions.
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squared-weighted approach cannot give a good prediction for the zeroth moment due to the

property of non-unique correspondence. Therefore, total chord counts are divided by three

ranges (1 µm – 10 µm, 10 µm – 100 µm, and 100 µm – 1,000 µm) and used as inputs of

the conversion model to correlate between measurements and s1.

Figures 5.3 and 5.4 compare trends of non-weighted total chord counts, square-weighted

total chord counts, divided non-weighted chord counts in three ranges, crystal mass, and

zeroth moments from the PBM simulation for 9 experimental cases. All experiments were

performed independently, but they are shown in one plot for easier comparisons. The black

dotted lines in both figures represent the simulated zeroth moment. The crystal mass trend

was added as the yellow dash-dot line in Figure 5.3, and only its trend has the same di-

rection as the zeroth moment’s behavior. All other trends, which are for total or divided

chord counts, show opposite directions to the zeroth moment. When the zeroth moment

increases, the chord counts decrease generally.

Based on this analysis, the measured properties such as non-weighted total chord counts,

divided non-weighted chord counts, square-weighted chord counts, the mass of crystals,

and interactions among mass and each kind of chord counts were chosen to predict the

zeroth moment of crystals through an empirical model. As shown in the previous section,

the zeroth moments and square-weighted chord counts have a relationship with each other,

but using only square-weight chord counts is not enough for a more accurate correlation.

Hence, additional testing is required for more measurable attributes. A linear model was as-

sumed as the first step to determine variables for the correlation between the reduced-order

state and measurements by the FBRM.

Even though a model using more variables, such as all possible variables and their

derivatives, can fit and predict the desired characteristics, it is inappropriate because un-

necessary predictors can provide overfitted results and generate noise to the predictions.

According to the principle of Occam’s Razor, the simplest one is the best, so it is neces-

sary to pick up the essential variables to describe phenomena. In this process, therefore,
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Figure 5.3: Comparison of normalized total chord counts, crystal mass, and the zeroth
moments from 9 experiments to figure out the tendency of each property during the crys-
tallization.
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Figure 5.4: Comparison of normalized non-weighted chord counts that are divided into
three ranges and the zeroth moments from 9 experiments to figure out the tendency of each
property during the crystallization.
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appropriate variables were chosen through the stepwise regression.

The stepwise linear regression, which was proposed in 1960 [142], begins regressing

the data points with an initial linear model. The p-value of F -statistics of the regressed

model is evaluated, and the result determined if predictor terms need to be added or re-

moved. The stepwise regression has two main approaches: forward selection and back-

ward elimination. The two approaches have opposed concepts. The forward selection

begins with no variables in the model, and variables are added sequentially based on a

model fit criterion. If the model does not improve statistical significance during the repeat

of variable addition process, the forward selection stops. The backward elimination has

the opposite process from the forward selection. The procedure begins with all candidate

predictors, and each predictor is removed repeatably based on the model fit criterion. If

the statistically significant deterioration happens by removing predictors in the model, the

elimination process is terminated. However, the stepwise regression conducts a forward

selection and backward elimination simultaneously [143].

Selection of predictors using the stepwise linear regression In this section, the predic-

tors were made from the FBRM measurements of 9 experimental cases, and the reduced-

order state, s1, was simulated by the PBM simulation. The stepwise linear regression was

carried out using stepwisefit function in Matlab™ 2019b. The total number of data

points is 6476, where 70% of all data points were selected as the training set. The validation

Table 5.1: Steps of stepwise linear regression to choose appropriate predictors for s1

Case m C0 C<10
0 C<100

0 C<1000
0 C2 mC0 mC2 mC<10

0 mC<100
0 mC<1000

0 p-value
1 IN OUT OUT OUT OUT OUT OUT OUT OUT OUT OUT 0
2 IN OUT OUT OUT OUT OUT OUT OUT OUT IN OUT 3.59E-254
3 IN OUT OUT IN OUT OUT OUT OUT OUT IN OUT 1.27E-10
4 IN OUT OUT IN OUT OUT OUT OUT IN IN OUT 1.18E-06
5 IN OUT OUT IN OUT IN OUT OUT IN IN OUT 6.19E-13
6 IN OUT OUT IN IN IN OUT OUT IN IN OUT 3.58E-36
7 IN OUT OUT IN IN IN OUT OUT IN IN IN 2.16E-17
8 IN OUT OUT IN IN IN IN OUT IN IN IN 3.67E-195
9 IN OUT OUT IN IN IN IN IN IN IN IN 6.12E-156

10 IN OUT OUT OUT IN IN IN IN IN IN IN 0.595
Final

coefficient 1.289 0 0 0 -0.154 0.355 -0.632 -0.0511 0.632 0.632 0.654
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Figure 5.6: Comparison between the target and predicted s1 for the test set.

98



set and test set have 15% of the total data points, respectively.

Table 5.1 reports the steps of regression. Each predictor was added and removed, and

the p-values were evaluated at each step. The criterion of the p-value was set as 0.05; so

when the p-value became larger than the criteria, the stepwise regression stopped and the

final model was selected. As a result, three predictors that are related to non-weighted chord

counts were rejected for the final regressed model. Figures 5.5 and 5.6 present the fitted

and predicted results by the final linear model, respectively. Even though the comparison of

s1 follows the red diagonal lines in the figures, the comparisons have large variation from

the diagonal lines, R2 = 0.724. This result means a linear model is not enough to convert

the measured data to s1 for the feedback process control.

5.4 Shallow neural network

ANN, which have been gaining attention to the machine learning field in recent years, are

composed of three parts: the input layer, hidden layer, and output layer as shown in Figure

5.7. Input and output layers literally deal with the input and output of the model while the

key part of ANN is the hidden layer. Each layer is connected to preceding and succeeding

layers, and the number of connections depends on the number of neurons in each layer.

Among the three kinds of layers, the hidden layers determine the performance of the

model. Since constructing hidden layers is critical, various ideas, such as the combinations

of connections among nodes and layers and types of transfer functions (or activation func-

tions), have been suggested to improve the prediction results. Each node has a mathematical

function, which is called a transfer function. Several types of functions are employed for

the transfer function, and a few common and new examples are shown in Table 5.2 [144,

145].

The input values from the input layer or nodes of the previous layers are put given into

the transfer function in the form below which is schematically illustrated in Figure 5.8.
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a = f(x) = f(Wp + b) (5.4)

In this study, an SNN, which has only one hidden layer, is employed to generate a model

to convert the PAT measurements to s1. The neural network model can be trained through

several training algorithms such as Levenberg-Marquardt backpropagation, resilient back-

propagation, scaled conjugate gradient, and so on. Mathworks® tested various training al-

gorithms according to the purpose of training with six different datasets [146]. According

to Ref. [146], the Levenberg-Marquardt backpropagation algorithm and scaled conjugate

gradient show the best performance, for supervised training for function approximation.

However, the Levenberg-Marquardt backpropagation algorithm demonstrates faster con-

vergence for cases with a few hundreds weights [147] and more accurate fitting result so

Input layer Output layerHidden layers

x1

x2

x3

x4

xi

y1

y2

y3

yj

· · · ·

· · · ·

· · · ·

· · · ·

Figure 5.7: Schematic figure of the artificial neural network
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Figure 5.8: Layer diagram of the artificial neural network. R is the number of elements in
the input layer and S is the number of nodes in the hidden layer.

that this algorithm was chosen for the training of the conversion model [146].

5.4.1 Information criteria

Selecting the number of parameters is also an important part of the model selection. In

the research area of deep learning, it is still challenging to decide the number of hidden

layers and nodes for each layer, but the SNN architecture has only one hidden layer. The

number of parameters in a SNN model depends on the number of neurons (or nodes) in the

hidden layer, so the number of neurons determines the performance of the SNN model if

other conditions are constant. A model with too few nodes cannot convert measurements to

particle attributes well. On the other hand, in a model with a superfluous number of nodes,

overfitting may occur. An overfitted model shows that the training set can be converted

well, but the test set or actual data show incorrect predictions. Therefore, it is important to

determine the optimal number of neurons in the SNN.

Information criteria are statistical methodologies to evaluate model performance. Akaike

information criteria (AIC) [148] and Bayesian information criteria (BIC) [149] are most

widely used to evaluate the model efficiency using the number of parameters in the model

and maximum likelihood of the data set. If the training set has a small sample size, mod-
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ified information criteria, corrected Akaike information criteria (AICc) [150] or adjusted

R2, are employed. In particular, it is reported that the use of AICc is possible when the

ratio between the number of data points and the number of parameters is less than 40; i.e.

n/p < 40 [151]. Because the SNN is a statistical model, information criteria have been

employed to determine the number of neurons in the hidden layer for ANN of various areas

[151–154]. These four types of information criteria are shown below:

AIC = 2p− 2 ln L̂ = 2p+ n ln(RSS/n) (5.5)

BIC = p lnn− 2 ln L̂ = p lnn+ n ln(RSS/n) (5.6)

AICc = AIC +
2p2 + 2p

n− p− 1
(5.7)

R2
a = 1− (1−R2)

n− 1

n− p− 1
(5.8)

where p is the number of parameter in the model, n is the number of data points, L̂ is the

maximum likelihood of the training data, and RSS is the residual sum of squares for the

training data. The prediction is considered better if the values of AIC and BIC are small,

while R2 and R2
a are large. In this chapter, information criteria introduced above were used

to choose the number of neurons for three cases with different transfer functions.

5.4.2 Determination of the transfer function and the number of neurons

Three different transfer functions, tanh, ReLU, and logistic, were employed to train the

conversion model. Figure 5.9 depicts the implemented transfer functions for this test. Hy-

perbolic tangent function, tanh, returns values between -1 and 1 for all inputs. Rectified

linear unit function, ReLU, gives outputs zero or positive values, and the logistic function
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outputs between 0 and 1. The SNN training was performed using the same data points that

divided for samples of training, validation, and test used in the stepwise linear regression

study.
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Figure 5.9: Three transfer functions chosen for testing the SNN model. (a) hyperbolic
tangent, (b) rectified linear unit, and (c) logistic function.

In this test, the number of neurons ranges from 10 to 150 with an increment of 10. The

number of data points in the training set is 4533, so if the number of neurons is greater than

110, n/p is less than 40. Therefore, AICc was also implemented to compare cases where

there were more than 110 neurons.

From Figure 5.10 to Figure 5.12 and Table 5.3 compare the information criteria of the

models with each function and the number of neurons. The selected models are highlighted

for each transfer function based on the comparison of information criteria in Table 5.3.

Among three cases, the SNN models using the ReLU function show smaller value of R2

values than models with other transfer functions, which indicats that ReLU may not be a

suitable function for the model. Hyperbolic tangent and logistic functions provide similar

results, while the optimal number of neurons that give the lowest AIC and BIC varies

depending on the choice of transfer function. The optimal number of neurons is 80 and 50

for the hyperbolic tangent and logistic function models, respectively. We also note that the

optimal number of neurons that give the smallest value of BIC is different from that of AIC.

The model with the lowest BIC has fewer neurons than the selected model by AIC, but the

model based on BIC does not have the largest R2 and R2
a values. Figure 5.13 compares
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Table 5.3: Comparison of information criteria values depending on the neuron numbers for
each transfer function.

Transfer function Neuron No. AIC BIC AICc R2 R2
a

tanh

10 6036.0 6684.3 10574.7 0.937 0.936
20 910.8 2201.0 5463.8 0.980 0.979
30 3373.2 5305.3 7950.5 0.967 0.964
40 2073.8 4647.8 6686.3 0.974 0.972
50 1848.6 5064.5 6507.9 0.977 0.975
60 2003.9 5861.7 6722.7 0.978 0.975
70 1788.0 6287.7 6579.8 0.979 0.975
80 -1051.2 4090.3 3828.2 0.990 0.988
90 1209.2 6992.7 6192.1 0.984 0.980

100 1950.8 8376.2 7054.4 0.982 0.977
110 1421.4 8488.6 6664.3 0.984 0.979
120 1299.6 9008.7 6702.4 0.985 0.979
130 2114.3 10465.3 7699.1 0.983 0.976
140 2812.1 11805.0 8603.4 0.980 0.972
150 1125.7 10760.5 7150.3 0.987 0.980

ReLU

10 9489.6 10137.9 14028.4 0.866 0.863
20 5897.7 7187.9 10450.6 0.941 0.939
30 9325.6 11257.7 13902.8 0.881 0.873
40 7352.9 9926.8 11965.3 0.925 0.918
50 6956.4 10172.2 11615.7 0.933 0.925
60 5826.6 9684.4 10545.4 0.951 0.943
70 6229.8 10729.4 11021.5 0.949 0.939
80 6247.1 11388.6 11126.5 0.949 0.939
90 5598.0 11381.4 10580.8 0.959 0.949

100 5289.6 11714.9 10393.1 0.962 0.951
110 6681.1 13748.3 11924.0 0.953 0.937
120 7531.9 15241.0 12934.6 0.945 0.925
130 7225.6 15576.6 12810.4 0.950 0.930
140 6271.8 15264.7 12063.0 0.962 0.945
150 7467.2 17102.0 13491.8 0.953 0.930

logistic

10 3957.0 4605.3 8495.7 0.961 0.960
20 2243.3 3533.5 6796.2 0.974 0.973
30 414.7 2346.8 4992.0 0.983 0.982
40 2043.4 4617.3 6655.8 0.976 0.974
50 -580.0 2635.8 4079.3 0.988 0.986
60 642.5 4500.3 5361.3 0.984 0.982
70 1220.9 5720.5 6012.6 0.982 0.979
80 1876.4 7017.9 6755.8 0.980 0.976
90 866.0 6649.5 5848.9 0.985 0.981

100 1187.5 7612.8 6291.0 0.984 0.979
110 4007.0 11074.2 9249.9 0.973 0.964
120 286.0 7995.2 5688.8 0.986 0.981
130 1776.6 10127.6 7361.4 0.984 0.978
140 3227.5 12220.4 9018.8 0.979 0.970
150 1355.4 10990.2 7380.0 0.986 0.979
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the predicted and targeted s1 using the selected model with each transfer function for the

test set. Red triangles lie farther from the diagonal line than blue dots and yellow squares,

which indicates that the SNN model with the ReLU function shows worse performance.

Models using hyperbolic tangent and logistic functions present similar prediction results,

but fewer neurons were used for the case using the logistic function. Therefore, the SNN

model using the logistic function is selected as the final conversion model for the feedback

control.

5.5 Summary

The conversion model to translate the measurements using FBRM and ATR-FTIR to the

reduced-order state, s1, was generated through several steps. It was found that the desired

reduced-order state depends on the zeroth moment. Hence, the relationship between the

zeroth moment from the PBM and chord counts by the FBRM was investigated. The result
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Figure 5.10: Result of model selection according to the number of neurons with tanh func-
tion.
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Figure 5.11: Result of model selection according to the number of neurons with ReLU
function.
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Figure 5.12: Result of model selection according to the number of neurons with logistic
function.
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shows that the non-weighted and square-weighted chord counts show relationships with

the zeroth moment, but the accuracy of relationships was not enough to be employed in

feedback control. An analysis shows that the data points with the same chord count and

crystal mass can have different chord length distribution, and the trend of crystal mass

only follows the same direction with the zeroth moment, but chord counts have opposite

trends with the zeroth moment. Under this observation, it was concluded that the potential

predictors should include crystal mass, non-weighted and square-weighted chord counts,

non-weighted chord counts divided by chord lengths, and interactions of mass and chord

counts.

A stepwise linear regression scheme was implemented to select predictors to prevent

the model’s overfitting, and 9 predictors and coefficients for the linear model were finally

obtained. The linear regression model had an R2 value of 0.72, indicating that the rela-

tionship can not be described with a simple linear model. To overcome this problem, a

Figure 5.13: Comparison of predicted s1 against targets using selected SNN models for
each transfer function.
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SNN model was employed to account for the complex relationship between the PAT mea-

surements and s1. Choosing the number of neurons is critical for accurate prediction while

avoiding overfitting. For this challenge, four kinds of information criteria were used to find

the optimal number of neurons. Moreover, three different transfer functions, such as hyper-

bolic tangent, rectified linear unit, and logistic functions, were tested for the SNN model.

The comparison of information criteria selected the final model that uses 50 neurons and

the logistic function. This final conversion model, which has an R2 value of 0.99, was

selected for the feedback control experiment of unseeded batch crystallization.

109



CHAPTER 6

FEEDBACK CONTROL OF MEAN VOLUME

CRYSTAL SIZE AND CRYSTAL MASS THROUGH

OPTIMAL FEEDBACK POLICY

6.1 Objectives

This chapter presents the feedback control for unseeded batch crystallization to obtain de-

sired mean volume size and yield utilizing results from previous chapters. Even though

Chapter 4 shows the Markov state model (MSM) and dynamic programming (DP) opti-

mization derived the optimal control policy to produce desired crystals using training sets

from the population balance model simulations, some experimental results have disagree-

ments on mean volume crystal size due to limitations such as response delay on employ-

ing temperature profile, model errors, stochastic phenomena, and the lack of monitoring

reduced-order state, s1. Chapter 4 shows that the open-loop control alone could not eval-

uate whether the current state is correctly heading toward the target state in real-time and

adjust control policies to obtain desired products. The process may not produce the desired

result through only the open-loop control scheme because the control system can face un-

expected disturbances during the control process. Therefore, the feedback control scheme

was employed to operate processes in this chapter. To monitor the current state, a shal-

low neural network (SNN) model was developed to convert the measured data by process

analytical technology (PAT) tools to s1 in Chapter 5.
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Figure 6.1: The flow of data in the feedback control process.

6.2 Optimal feedback control of crystallization

Feedback control requires monitoring current states and providing feedback signals to the

control system. The second state, s2, can be estimated using the measured IR spectrum,

and the first state, s1, can be monitored through the SNN model using data from the FBRM

and ATR-FTIR. The distance-to-target was evaluated based on monitored reduced-order

states, and the optimal control policies were updated according to the measured s1 and s2

to minimize the distance-to-target at each time step.

The experimental system was operated according to the logic in Figure 6.1. PAT mea-

surements were updated once every 30 seconds, but the temperature setpoint was updated

every single minute using the obtained optimal control policy. Even if the temperature set-

point was updated every 30 seconds, the system temperature takes a longer time than 30

seconds to respond to the setpoint change due to the thermal response delay. The optimal

control policy was also constantly explored every 10 minutes again to reflect the current
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reduced-order states because the optimal control policy should be searched again if the

controlled states do not follow the states by the previous optimal control policy. In the

open-loop control, the optimal control policy was searched only once at the beginning of

the control process and never searched again. If the system temperature follows the tem-

perature setpoint without response delay, this step of continuous exploration for the optimal

control policy may not be necessary. However, the optimal control policy was constantly

investigated because the crystallizer temperature cannot be controlled perfectly, as shown

in Chapter 4.

6.2.1 Experimental implementation of the feedback control

The implementation of the feedback control follows the steps in Figure 6.2. Five different

software programs participate in the feedback control: two programs (iCFBRM and iCIR)

to collect raw data (1), Microsoft Office Excel for the communication between Matlab and

programs by the manufacturer, such as iCFBRM, iCIR, and iControl (2), Matlab to evaluate

current states and calculate optimal control action (3), and a program (iControl) to control

the experimental equipment (4). Because control software programs from the manufac-

turer cannot communicate to Matlab directly, MS Excel handles data between Matlab and

programs by the manufacturer.

Four feedback control experiments were conducted for the same target points in Table

4.3 to verify that the feedback scheme can control the crystallization process based on the

optimal control policies.

6.2.2 Results of the feedback control

Comparison of experimental results Figure 6.3 presents trends of the controlled tem-

perature in the crystallizer and temperature setpoints for all experimental runs. This figure

compares the system temperature profiles and temperature setpoints under the optimal con-

trol, and the temperature was well-controlled based on the setpoint change at each time
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Figure 6.3: Comparison of temperature profiles for all cases: (a) Case 1, (b) Case 2, (c)
Case 3, and (d) Case 4. Blue solid lines represent controlled system temperature, and red
dotted lines show setpoint at each time step.

step. In some cases, the temperature setpoint profile shows spikes, but they were not real-

ized due to the thermal response delay. The spikes on the temperature setpoint seems to be

caused by incorrect conversion between PAT measurements and reduced-order states. As a

result, the system temperature profiles follow the temperature setpoint profile as shown in

Figure 6.3.

In Figure 6.3(a), (b), and (d), profiles of temperature setpoints at the temperature plateaus

have differences from the measured temperature. However, the actual temperature control

was carried out only after the temperature plateau ended, even though the temperature set-

points were updated during the temperature plateau was kept. For Case 3, the temperature

setpoint was fixed as the plateau temperature (33.4 ◦C) as shown in Figure 6.3(c). Thus,
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the control system tried to change the temperature during the temperature plateau. In the

iControl software, the plateau temperature was set as a constant value, although Matlab and

Excel tried to change the temperature. This is the reason that the process temperature and

temperature setpoint have differences in Cases 1, 2, and 4.

Table 6.1 compares entire simulated and experimental results at the final time step for

all control methods including open-loop and closed-loop. In this table, s1, s2, and
√
dfin

for experimental cases by sieving and weighing analyses were estimated using measured

results, Equations (2.18), and (4.3). Figure 6.4 visualized the comparisons in Table 6.1.

s1, s2, and
√
dfin cannot be recognized directly by sieving and weighing crystals, but these

values can be estimated by L̄0,3 and m of crystals. The mass of crystals relates to the third

moments, crystals density, and volume shape factor. The mean volume crystal size can be

obtained using the zeroth and third moments. Because s1 = µ0×10−6 and s2 = µ3×10−12,

these values at the final step can be calculated using recalled Equations (2.18) and (4.3).

kv =
V

L3
=

mc

ρcL3
(2.18)

L̄30 =

(
µ3

µ0

)1/3

= 100

(
s2

s1

)1/3

(4.3)

Feedback experimental operations for Case 1, 3, and 4 were terminated when the system

met the termination criterion,
√
dτ ≤ 0.5, but Case 2 was manually finished by the operator.

The estimated mean volume crystal sizes and crystal masses based on monitored reduced-

order states for three automatically terminated cases show values near the target values.

However, measured mean volume crystal sizes and crystal mass by sieving and weighing

analyses show some deviation, which is discussed below. Figures 6.5 – 6.8 present (a)

trajectories of reduced-order states to the target points on state space plots, (b) profiles of
√
dτ , (c) crystal mass, and (d) supersaturation.

The monitored results by PAT tools for Case 1 show reasonable trends in Figure 6.5.
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Table 6.1: Results comparison among targets, simulation results, open-loop experimental
results, and feedback experimental results. This table also compares results from feedback
control experiments by the PAT monitoring and by sieving and weighing.

Operation Method L̄30 [µm] m [g] s1
* s2

*
√
dfin

*

Case 1

Targets 225.0 9.0 7.85 89.4 -
Simulation** using MSM and DP 220.7 9.0 8.30 89.1 0.080
Simulation using PBM 199.5 8.4 10.5 83.4 6.5
Open-loop Exp. sieving and weighing 168.6 8.2 16.9 81.2 13
Feedback Exp. Monitored by PAT 224.7 9.0 7.90 89.6 0.21
Feedback Exp. sieving and weighing 138.9 9.3 34.3 92.0 26

Case 2

Targets 200.0 9.0 11.2 89.4 -
Simulation** using MSM and DP 202.9 9.0 10.7 89.3 0.064
Simulation using PBM 208.3 9.5 10.6 95.5 6.1
Open-loop Exp. sieving and weighing 127.8 9.3 44.0 91.9 33
Feedback Exp. Monitored by PAT 187.4 9.0 13.8 90.5 2.8***

Feedback Exp. sieving and weighing 179.6 9.5 16.3 94.6 6.4

Case 3

Targets 175.0 7.0 13.0 69.5 -
Simulation** using MSM and DP 178.0 7.0 12.4 69.8 0.18
Simulation using PBM 163.2 7.5 17.1 74.5 6.5
Open-loop Exp. sieving and weighing 132.0 7.4 31.8 73.2 19
Feedback Exp. Monitored by PAT 174.1 6.9 13.2 69.7 0.3
Feedback Exp. sieving and weighing 164.4 7.5 16.8 74.7 5.6

Case 4

Targets 160.0 8.0 19.4 79.5 -
Simulation** using MSM and DP 162.0 8.0 18.8 79.7 0.21
Simulation using PBM 100.2 8.8 86.4 86.9 67
Open-loop Exp. sieving and weighing 136.2 8.2 32.3 81.6 13
Feedback Exp. Monitored by PAT 160.1 8.0 19.4 79.7 0.24
Feedback Exp. sieving and weighing 125.7 8.3 41.4 82.2 22

* Final states and square root of distances, s1, s2, and
√
dfin, for all cases excluding values monitored

by PAT tools in feedback control in this table are evaluated from the measured and simulated L̄30 and
m. s1 and s2 are scaled moments, which are µ0/106 and µ3/1012, respectively.
** Simulations and open-loop experimental results are from Table 4.4.
*** This experiment was manually terminated by the operator.
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Figure 6.4: Comparisons of final status for each control case in Table 6.1.
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Figure 6.5: Feedback control results for Case 1: (a) trajectory of reduced-order states, (b)√
dτ profile, (c) monitored crystal mass profile, and (d) measured supersaturation profile.

In panel (a), blue circles and line represent measured states, black dot is the target, and the
red ⊕ shows the final measured state. Crystal mass and supersaturation are measured by
ATR-FTIR.

In Figure 6.5(a), the trajectory of reduced-order states explores the state space to reach the

target, and the final state lands on the target. While the controller tries to minimize
√
dτ ,

the supersaturation stabilizes and converges on 0, as shown in Figure 6.5(d), so the status

in the crystallizer stops changing. When
√
dτ became less than 0.5, the feedback control

process was finished automatically. Because s1 and s2 are near the target, the estimated

L̄30 and m are close to the target values as shown in Table 6.1. However, the recovered

crystal has different characteristics from the monitored results. Even though the recovered

crystal mass has a 3% higher mass than the target, the mean volume crystal size is 38%
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less size than the target. Because the temperature and supersaturation profiles at the end

of the control do not have steep changes, it is difficult to assume additional crystallization

or dissolution happened between periods when the control was terminated and crystals

were sampled. The remaining possible issue, in this case, is the incorrect conversion using

the SNN model from Chapter 5 between the measured attributes by PAT tools and s1.

The spike on the temperature setpoints as shown in Figure 6.3(a) can be caused by the

incorrect conversion of PAT measurements to the reduced-order states. The supersaturation

in the look-up table and the current state determines the optimal temperature setpoint, but
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Figure 6.6: Feedback control results for Case 2: (a) trajectory of reduced-order states, (b)√
dτ profile, (c) monitored crystal mass profile, and (d) measured supersaturation profile.

In panel (a), blue circles and line represent measured states, black dot is the target, and the
red ⊕ shows the final measured state. Crystal mass and supersaturation are measured by
ATR-FTIR.
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if the converted current states are not accurate, the temperature setpoint can make unstable

profiles. This issue about the conversion model will be further discussed at the end of this

section.

The feedback control for Case 2 was ended manually by the operator since the reduced-

order states approached the vicinity of target point but did not meet the tolerance of 0.5,

as shown in Figure 6.6(a). In Figure 6.6(b),
√
dτ had the minimum value of 1.4 at 180

minute. However, the distance-to-target slightly increased again after 180 minute, so the

experiment was ended manually. Even though the final states did not quite reach the target

point, the analyzed L̄30 by sieving has 10% less result than the target value. The difference

of L̄30 between by sieving and monitored by PAT tools has the smallest value among four

cases. The temperature profile in Figure 6.3(b) and thus the supersaturation profile in Figure

6.6(d) show small jitter. It seems that the change of the state inside the crystallizer before

crystal recovery was stable, and the sieved crystals may have similar characteristics to the

monitored results by PAT tools.

In Case 3, the analyzed mass and L̄30 obtained by sieving also have close results to

the target among the four cases. In particular, L̄30 of this case is about 6% less than the

target mean volume size, and this is the closest value to the target among the four cases.

This result may happen because the amplitude of the temperature profile becomes smaller

and the temperature converges on 31 ◦C, and the final supersaturation is near 0. As a

result, the change of crystal characteristics according to further nucleation and dissolution

is minimized, so the physically analyzed mean volume crystal size and mass are close to

the target.

In Case 4, the feedback control experiment was terminated after 40 minutes from the

beginning of the control (after the temperature plateau finished). The recovered crystal has

a 21.4% smaller mean volume crystal size and a 4% greater weighed crystal mass than the

target values. The control was over while the temperature was rapidly decreasing as shown

in Figure 6.3(d), so the supersaturation in Figure 6.8(d) sharply increased up to near 0.3.
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Figure 6.7: Feedback control results for Case 3: (a) trajectory of reduced-order states, (b)√
dτ profile, (c) monitored crystal mass profile, and (d) measured supersaturation profile.

In panel (a), blue circles and line represent measured states, black dot is the target, and the
red ⊕ shows the final measured state. Crystal mass and supersaturation are measured by
ATR-FTIR.

This change makes
√
dτ quickly decrease, and we can see the distance profile approach to

zero in Figure 6.8(b). With this condition, the secondary nucleation rate raises due to this

high supersaturation level as interpreted in Chapter 3 so that the total number of crystals

in the system can increase significantly. The temperature in the crystallizer might become

lower continuously until the crystals were sampled even though the control procedure was

ended due to the thermal response delay. As a result, s1 might have increased explosively.

Despite the increase in the number of fine particles, the effect of this increase on the volume

of the total crystal is not significant. Therefore, even after the end of the control procedure,
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Figure 6.8: Feedback control results for Case 4: (a) trajectory of reduced-order states, (b)√
dτ profile, (c) monitored crystal mass profile, and (d) measured supersaturation profile.

In panel (a), blue circles and line represent measured states, black dot is the target, and the
red ⊕ shows the final measured state. Crystal mass and supersaturation are measured by
ATR-FTIR.

it is expected that the actual L̄30 will decrease significantly compared to the target as s1

increases significantly compared to the increase in s2.

Limitations. In all cases, the mean volume crystal sizes by sieving (ex situ) analyses

show smaller values than the targets. This result is caused by the definition of the mean

volume size and the sensitivity of the total crystal number. The mean volume size is suscep-

tible to the mass of crystals in the smallest bin size range, 0 µm – 53 µm. Even if the crystal

mass in this range is only 0.01 g, the number of crystals is approximated as 534,000 with

the volume shape factor, solid density, and the characteristic size of 26.5 µm, which is the
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arithmetic mean size of 0 µm and 53 µm based on Equation (2.18). In contrast, the same

mass of the crystals in the range between 600 µm and 710 µm has only 36 crystals. This

drastic difference in the number of crystals influences the mean volume size. The weighing

balance precision employed for these experiments is 0.01 g, so even a slight change of the

mass of tiny crystals can change the final mean volume size. The mass balance with the

precision of 0.01 g can show the mass between 0.005 g and 0.0149 g as 0.01 g, and the

possible number of crystals in the smallest sieve tray range can be around between 267,000

and 790,000. However, this crystal mass does not significantly affect the mass of total crys-

tals, so the range of L̄30 that can be approximated becomes very wide. As a result, feedback

control cases with a much higher supersaturation level, σ, than 0.1 can generate numerous

nuclei, and it can make L̄30 smaller than expected results.

This feedback control approach employed an SNN model, which was developed in

Chapter 5. However, it is difficult to say that the model can translate the measured data

using PAT tools to the desired states perfectly, and the model never occurs errors. Ad-

ditionally, data-driven models may return incorrect results for inputs present in parts not

involved in the training session. Therefore, data-driven models should be constantly up-

dated using new data points to improve the predictive ability of the model. In Chapter 5,

the driven model shows a high R2 values of 0.988, but the training data set cannot reflect

all possible system states. This is a limitation of the developed SNN model, so additional

training is required to improve the model accuracy.

6.3 Summary

In this chapter, feedback control experiments were carried out to produce crystals with

desired mean volume size and mass. All experiments were controlled by optimal control

policy and the SNN model to convert PAT measurements and reduced-order states for up-

dating system states.

This chapter shows that the feedback control approach adjusts the temperature to re-
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duce the distance-to-target,
√
dτ , and the final states were able to meet the criteria. The

final state of Case 1 reached the target according to the in situ monitored results, but the

recovered crystals have smaller L̄30 than the target values. However, the temperature and

supersaturation show stable profiles at the end of the control, the status in the crystallizer

may not change; therefore, it is assumed that the monitored attributes by the PAT tools may

not be included in the training set of the SNN model, and the translated s1 had incorrect

values. Case 2 showed that s1 did not land on the target value, even though the temperature

profile repeatedly increased and decreased with a narrow range. Also, the distance-to-target

slightly enlarged while the temperature cycled; this control was ended manually. However,

the results by sieving and weighing provided the closest results to the analyzed results using

the PAT tools among all cases. Case 3 completed the feedback control since the distance-

to-target met the criterion, and L̄30 and m from sieving and weighing analysis also show

the shortest distance-to-target. Case 4 was terminated while the temperature was rapidly

decreasing, even though the control terminating condition was satisfied. The temperature

control has a response delay, and the sudden termination of control kept the temperature

decreasing; this phenomenon caused smaller L̄30 and larger mass of recovered crystals than

the target.

Two main limitations on the feedback control were observed from control experiments:

1) Fines highly affect the value of L̄30, and 2) the data-driven model requires continuous

training using new data points. However, the feedback control scheme was experimentally

validated that the final crystal masses showed similar values to the target for all experimen-

tal data. Moreover, it is expected that the mean volume sizes can be improved since the

reasons for the mismatch in the results were also identified.
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CHAPTER 7

CONCLUSION AND RECOMMENDATION

7.1 Conclusion

This thesis presents the crystallization control to obtain paracetamol from the ethanolic

solution utilizing a dynamic programming approach. The system temperature was manip-

ulated to control the process. This approach has 4 steps to achieve the final purpose: 1) de-

veloping a population balance model to provide training sets for a Markov state model with

less effort to save time and cost for conducting experiments, 2) training the Markov state

model to find the optimal control policy through dynamic programming, and implementing

the optimal control policy on the open-loop control approach, 3) developing a data-driven

model to convert the monitored properties by PAT tools to reduced-order states, and 4)

conducting feedback control to produce crystals with desired attributes utilizing previous

results.

In the first step of this process, a population balance model was developed to predict

the crystallization processes utilizing temperature cycling. The parameters for nucleation,

growth, and dissolution kinetics were estimated based on experimental results, and the

predictive ability of the model was validated using test experimental sets. Moreover, the

developed model was utilized to analyze the nature of nucleation, growth, and dissolution

during the crystallization and the effect of temperature cycling on controlling the mean

volume size. The PBM model was also used to generate the data sets to train the Markov

state model to save cost and time for experiments.

To obtain the desired crystals, crystallization processes should be controlled. In this the-

sis, a dynamic programming approach was implemented to find the optimal control policy
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for the crystallization process. The dynamic programming approach requires a model to de-

scribe the crystallization system, but the PBM has challenges to simplify the crystallization

behavior. Because the PBM is a partial differential equation, it requires much information

to solve the PBM, such as information on neighbor temporal and spatial grids. However,

the first-order Markov state model, which assumes only the current state can affect the state

at the next time step, can simply describe the crystallization. The PBM can generate data

points to train the MSM without experiments, and two reduced-order states, s1 = µ0×10−6

and s2 = µ3 × 10−12, were employed to control the crystallization. The trained MSM and

DP to search the optimal control policy were employed to obtain desired crystals. The DP

approach showed that it could provide the optimal control policy based on the MSM utiliz-

ing the PBM, and the temperature profiles for desired crystals were validated through PBM

simulations and open-loop control experiments. However, the open-loop control presents

some limitations: 1) this method cannot respond to the disturbances during the process

operation, and 2) the temperature control system has response delay so that the recovered

crystals had differences from the target attributes, especially the mean volume size.

To overcome these limitations, the feedback control scheme is required, but a conver-

sion model from the measured data by PAT tools to the reduced-order states is needed. In

particular, the first reduced-order state, s1, is related to the total number of crystals, and this

attribute is significant to evaluate the mean volume crystal size. Therefore, three steps were

carried out to determine the conversion model: 1) validating s1 is relating to the FBRM

measurements, 2) determining which measurements from PAT tools affect s1 through step-

wise linear regression, and 3) making a shallow neural network model using inputs from the

previous step. In the third step of the model development, techniques to evaluate informa-

tion criteria were employed to determine the transfer function and the number of neurons

for the SNN model. This model shows a good agreement with R2 = 0.986 so that this

model was employed in the system for the monitoring system status and making decisions

in the feedback control process.
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The feedback control of the crystallization employed the procedure to optimize the

control policy and the SNN model to translate the PAT measurements to the reduced-order

states. The conducted feedback controls were generally ended by the termination crite-

ria,
√
dτ ≤ 0.5; therefore, the monitored L̄30 and m are close to the target characteristics.

Sieved and weighed attributes of recovered crystals from two experimental cases showed

the similar values to the targets. For two remaining cases, measured results by sieving and

weighing have smaller L̄30, but masses of sampled crystals are close to the target. The

mismatching results were analyzed and possible reasons were drawn: 1) the PAT mea-

surements for Case 1 were not included in the training set of the SNN model, which was

developed in Chapter 5, and 2) numerous nuclei were generated by the rapidly increased

supersaturation at the end of the control for Case 4, so the increased s1 resulted in a reduced

L̄30 than the target.

Through this thesis, we validated that the optimal control policy can be obtained by

reducing the number of experiments. It is expected this framework will be utilized for

crystallization control of other material systems.

7.2 Recommendations

7.2.1 Development of a digital twin of the crystallizer

A digital twin is a concept of a represented physical system using digital models or data,

and the simulations by the digital system can provide the improved operation method or

expected results to the physical objects. The initial application of the concept of twin is

the rescue project for Apollo 13 by NASA, and they tested the optimal condition to rescue

astronauts who met distress on the way to the Moon using the physically duplicated space

module on the ground [155]. As the computing technique has improved, the concept of the

twin was extended to the digital/virtual space. An early example of the digital twin of a

chemical process is monitoring safety issues from the chemical process by Tennessee East-
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man [156], and the developed digital twin is continuously improved and applied to under-

stand the chemical process [157, 158]. The digital twin concept is continuously spreading

in the chemical engineering and bioengineering area [159–162].

The framework through the entire work shown in this thesis can be improved as a digital

twin of the batch cooling crystallization. This framework requires experimental data points

to train the PBM. However, once the PBM model parameters are determined, the PBM can

generate data sets to train the MSM. The trained MSM and DP approach can be utilized

to obtain the optimal control policy to produce the desired crystals. Also, the conversion

model between PAT measurements and reduced-order states can be trained by the provided

experimental data for the PBM parameter estimation step. In this study, however, the PBM

was trained for specific conditions such as supersaturation range at the temperature plateau

and initial solution concentration. The conversion model also requires more data points to

improve the performance.

Despite numerous works that have been reported about the PBM modeling and process

control for crystallization, the cases that mentioned the digital twin concept for the crys-

tallization process are rare. If the PBM model and the approach for the process control

will be unified and continuously trained using experimental data points, the digital twin

can provide the optimal control policy with higher accuracy and test effects of disturbance

in the process operation. Digital twins can be established using any models, including em-

pirical and fundamental models if the models can describe the physical system. The only

limitation of the digital twin is that the quality of the digital twin depends on the number

of training data set. However, if the experimental data points will be continuously added to

the training set, the accuracy of the digital twin will be improved to represent the physical

system. As a result, establishing a digital twin for batch cooling crystallization is expected

to reduce the probability of failure and accidents in actual operation.
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7.2.2 Possible attempts for better crystallization control using dynamic program-

ming.

Variable selection in the reduced-order state space. In this thesis, the reduced-order

states, s1 and s2, were used to represent desired crystal attributes: the mean volume crystal

size, L̄30, and crystal mass, m. The training set of the MSM model was generated using

the PBM simulation results, not actual experimental results. However, the developed PBM

can estimate any crystal characteristics related to the crystal size distribution, so the state

space can directly employ any desired attributes from the PBM simulation. For example,

the PBM can provide any kind of mean size of crystals, crystal mass, and even the span of

the crystal size distribution to evaluate the size distribution. Therefore, once it is confirmed

that the relationship between the chosen input variable and the desired outputs is clear, the

desired properties can be used directly in the state space.

Extension of the number of axes in the state space. In this thesis, a 2-D state space

was utilized to control the mean volume crystal size and the mass of crystals. However, if

more than two attributes should be controlled in the system, and they cannot be expressed

in the 2-D state space, additional axes are needed to describe the dynamic behavior of the

crystals during the control process. For instance, if three attributes, such as the crystal mass,

volume-weighted mean size, and the width of the size distribution, should be controlled

simultaneously, these three attributes can be illustrated in the 3-D state space. Otherwise,

µ3, µ4, and µ5, can be shown in the 3-D state space according to the following relationships:

1) the crystal mass is directly related to µ3, 2) the volume-weighted mean size is µ4/µ3, and

3) the volume-weighted coefficient of variation is (µ3µ5/µ
2
4 − 1)1/2 if the size distribution

follows a normal distribution [107]. However, the addition of axes in the state space may

increase the time for the model training. Moreover, more data points may be required to

cover the region in the state space for the control.
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Correlation between particle size distribution and chord length distribution. In this

thesis, a shallow network model was developed to convert the PAT measurements and the

first reduced-order state, s1, for the feedback control. The developed model shows good

conversion abilities so that the feedback control experiments were successful. From this

result, a neural network model was constructed to convert the FBRM measurements to the

particle size distributions. Crestani et al. made a neural network model utilizing the mea-

sured chord length distributions and particle size distributions by sieving analysis [73]. Due

to the complexity of the neural network model, the number of training data is significant.

Moreover, the sieving analysis can provide only one data set per experiment. However, the

PBM can supply as many data points as the FBRM generates during experiments. There-

fore, the measured chord length distribution data and simulated particle size distribution

results can be utilized as a training data set for the conversion model. If this model is reli-

able, more direct data transfer will be available during the crystallization feedback control.

7.2.3 Determination of particle size distribution using other methods

Sieving analysis was used in this study to determine the crystal size distribution. However,

this method has a limitation for accurate analysis. If too many crystals exist on a sieve tray

with small pores, we cannot be sure every crystal can meet the surface of the sieve during

the process. Moreover, static electricity can make crystals attach to the wall of a sieve tray.

Figure 7.1 presents problems that can happen while the sieving analysis is conducted.

Many other in situ and ex situ methods can be employed to investigate the crystal size

distribution such as microscopic analysis, laser diffraction, in situ camera, ultrasound ex-

tinction, and dynamic light scattering [83]. Among various techniques, microscopic anal-

ysis can be additionally selected due to its simple operation process. Moreover, if the

microscope supports taking pictures, the image analysis tools can analyze crystal size dis-

tribution. The microscopic analysis was attempted for paracetamol crystals, and the process

is shown in Appendix D. Even though the image analysis showed possibility to investigate
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(a) (b)

Figure 7.1: Possible issues during the sieving analysis. (a) The case with a large volume
of crystals in a sieve tray, and (b) sticking crystals on the wall of the tray due to the static
electricity.

crystal size distributions, the process was not establish perfectly. Additional works are

necessary to implement the microscopic image analysis for the crystal size distribution.
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APPENDIX A

SPACE-TIME CONSERVATION ELEMENT/SOLUTION

ELEMENT (CE/SE) METHOD

To describe the dynamics of a system that changes according to time and space, partial dif-

ferential equation (PDE) is very useful. To solve the PDE, many numerical methods have

been developed and employed to approximate solutions of PDEs. Representative exam-

ples are finite-difference method (FDM), finite-element method (FEM), and finite-volume

method (FVM). The space-time CE/SE method developed and improved by Chang [117,

163] is an example of FVM, and this scheme was employed to obtain the characteristics of

crystals from the PBM.

A.1 Definition of conservation element and solution element

Consider the one-dimensional PBM to describe crystallization in a simple Euler equation.

∂u

∂t
+
∂f

∂x
= 0 (A.1)

Suppose h = (f, u), Equation (A.1) becomes

∇ · h = 0 (A.2)

∫∫
A

∇ · dA = 0 (A.3)

where dA = dxdt and ∇ = (∂/∂x, ∂/∂t). The divergence theorem makes Equation (A.3)

as
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∮
C

h · dC = 0 (A.4)

where C is a closed curve that cover the target region and dC is a line segment perpendicular

to outward directions of C. Here, dC = (−dt, dx), so Equation (A.4) becomes

∮
C

(f)dt+ (−u)dx = 0 (A.5)

C is a closed curve in the domain of (x, t), and the integral in C is zero. Therefore, there is

a scalar function φ whose derivative∇φ = (−u, f).

A.1 indicates the grid structure in the space-time domain, and the information flow of

solution points that are used to estimate unj and (ux)
n
j at the node of (j, n). Here, unj and

(ux)
n
j means

unj ≡ u(xj, t
n), (ux)

n
j ≡

∂u

∂x
(xj, t

n) (A.6)

j

x

n

j-1j-2 j+1 j+2j+3/2j+1/2j-1/2j-3/2

n-1

n+1

n+1/2

n-1/2

𝑢𝑗−1
𝑛−1, (𝑢𝑥)𝑗−1

𝑛−1 𝑢𝑗+1
𝑛−1, (𝑢𝑥)𝑗+1

𝑛−1

𝑢𝑗−1/2
𝑛−1/2

, (𝑢𝑥)𝑗−1/2
𝑛−1/2

𝑢𝑗+1/2
𝑛−1/2

, (𝑢𝑥)𝑗+1/2
𝑛−1/2

𝑢𝑗
𝑛, (𝑢𝑥)𝑗

𝑛

𝑢𝑗
𝑛−1, (𝑢𝑥)𝑗

𝑛−1

Figure A.1: Organization of grid mesh in the CE/SE scheme, and time-marching variables
and the information flow to estimate one CE/SE time step.
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Figure A.2: Definition of conservation element (CE) and solution element (SE)

A.2 shows the definitions of conservation element (CE), and solution element (SE) of

the CE/SE scheme. The CEs are the closed rectangle by blue lines, and an example of SE

is shown as the cross orange lines. The (SE)nj has a solution point at the cross point of two

lines at (j, n), and it has four end points of (j − 1/2, n), (j + 1/2, n), (j, n − 1/2), and

(j, n + 1/2). The solution points in the structure are shown as black dots and red squares

in A.2. The CE is bounded by three SEs without overlaps; for example, (CE)nj is covered

by (SE)nj , (SE)n−1/2
j−1/2 , and (SE)n−1/2

j+1/2 . The functions u(x, t) and f(x, t) can be approximated

by first-order Taylor expansions about the center of SE as Equations (A.7) and (A.8).

u(x, t) = unj + ux(x− xj) + ut(t− tn) (A.7)

f(x, t) = fnj + fx(x− xj) + ft(t− tn) (A.8)

where ut = ∂u/∂t, ux = ∂u/∂x, ft = ∂f/∂t, and fx = ∂u/∂x.

From Equation (A.1),

ut = −fx (A.9)

The (SE)nj is a part of the boundary of (CE)nj , so ∇φ = (−u, f) at (j, n). This φ can be
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second-order approximated using u, ux, ut, f, fx, and ft as shown from Equation (A.10) to

Equation (A.14).

∂φ

∂x
= −u (A.10)

∂φ

∂t
= f (A.11)

∂2φ

∂t2
= ft (A.12)

∂2φ

∂x2
= −ux (A.13)

∂2φ

∂x∂t
= fx (A.14)

Substituting Equations (A.7) and (A.8) into Equations (A.10) and (A.11), and using Equa-

tion (A.9), φnj becomes

φnj = fnj (t−tn)−unj (x−xj)+
1

2
(ft)

n
j (t−tn)2− 1

2
(ux)

n
j (x−xj)2+(fx)

n
j (x−xj)(t−tn)+C

(A.15)

To estimate of CEs, the flux conservation law by the neighboring SEs is considered.

One CE is surrounded by three SEs, as mentioned above, and the relationship among three

segments is shown in Figure A.3. The inputs of the case in Figure A.3 to estimate each φ

are shown in Table A.1. In Figure A.3, φ1 and φ6 are on the same position, but they can be

expressed different with Equation (A.15)
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𝒏

𝒖𝒋−𝟏/𝟐
𝒏−𝟏/𝟐

𝒖𝒋+𝟏/𝟐
𝒏−𝟏/𝟐

𝚫𝒕/𝟐

𝚫𝒙/2

Figure A.3: Conservation law by the neighboring SEs. Each SE is illustrated by different
color and line.

Table A.1: Inputs to estimation each φ using Equation (A.15)

x t j n

φ1 xj +
∆x

2
tn j n

φ2 xj −
∆x

2
tn j n

φ3 xj−1/2 tn−1/2 +
∆t

2
j − 1/2 n− 1/2

φ4 xj−1/2 +
∆x

2
tn−1/2 j − 1/2 n− 1/2

φ5 xj−1/2 −
∆x

2
tn−1/2 j + 1/2 n− 1/2

φ6 xj−1/2 tn−1/2 +
∆t

2
j + 1/2 n− 1/2

φ1 =fnj (tn − tn)− unj
((

xj +
∆x

2

)
− xj

)
+

1

2
(ft)

n
j (tn − tn)2 − 1

2
(ux)

n
j

((
xj +

∆x

2

)
− xj

)2

+ (fx)
n
j

((
xj +

∆x

2

)
− xj

)
(tn − tn) + C

=− unj
(

∆x

2

)
− 1

2
(ux)

n
j

(
∆x

2

)2

+ C

(A.16)

137



and

φ6 =f
n−1/2
j+1/2

((
tn−1/2 +

∆t

2

)
− tn−1/2

)
− un−1/2

j+1/2

(
xj+1/2 − xj+1/2

)
+

1

2
(ft)

n−1/2
j+1/2

((
tn−1/2 +

∆t

2

)
− tn−1/2

)2

− 1

2
(ux)

n−1/2
j+1/2

(
xj+1/2 − xj+1/2

)2

+ (fx)
n−1/2
j+1/2

(
xj+1/2 − xj+1/2

)((
tn−1/2 +

∆t

2

)
− tn−1/2

)
+ C

=f
n−1/2
j+1/2

(
∆x

2

)
+

1

2
(ft)

n−1/2
j+1/2

(
∆x

2

)2

+ C

(A.17)

remaining φ are

φ2 = −un−1/2
j+1/2

(
−∆x

2

)
− 1

2
(ux)

n−1/2
j+1/2

(
−∆x

2

)2

+ C (A.18)

φ3 = f
n−1/2
j−1/2

(
∆t

2

)
+

1

2
(ft)

n−1/2
j−1/2

(
∆t

2

)2

+ C (A.19)

φ4 = −un−1/2
j−1/2

(
−∆x

2

)
− 1

2
(ux)

n−1/2
j−1/2

(
−∆x

2

)2

+ C (A.20)

φ5 = −un−1/2
j+1/2

(
−∆x

2

)
− 1

2
(ux)

n−1/2
j+1/2

(
−∆x

2

)2

+ C (A.21)

Because the integral of closed curve is zero,

(φ1 − φ2) + (φ3 − φ4) + (φ5 − φ6) = 0 (A.22)

Substituting all φ using into Equation (A.22),

unj =
1

2

(
u
n−1/2
j−1/2 + u

n−1/2
j+1/2 + s

n−1/2
j−1/2 + s

n−1/2
j+1/2

)
(A.23)

where
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snj =
∆x

4
(ux)

n
j +

∆t

∆x
fnj +

∆t2

4∆x
(ft)

n
j (A.24)

If unj can determine (ux)
n
j , f

n
j , and (ft)

n
j , iteration can be carried out through the temporal

domain by this marching scheme. Suppose f(u) = au in Equation (A.1), the Cournat-

Friedrichs-Lewy (CFL) number, ν2 < 1, is used to attain the stability condition for the

marching process, where ν = a∆t/∆x. Terms in Equations (A.23) and (A.24) should

be calculated to solve the PBM using this scheme. If we assume unj is known, fnj can be

calculated because f is a function of u. ft can be obtained using equations, ft = fuut and

ut = −fx, so ft = −fufx. Finally, ux is the only term unknown in Equations (A.23) and

(A.24), so this term should be estimated from known values.

A.2 Approximation of ux

Figure A.4 shows the terms that are used to approximate ux. Suppose that values of un−1/2
j−1/2 ,

u
n−1/2
j+1/2 , (ux)

n−1/2
j−1/2 , (ux)

n−1/2
j+1/2 are known, then the values of (ut)

n−1/2
j−1/2 and (ut)

n−1/2
j+1/2 can be
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Figure A.4: Definitions of each term to estimate (ux)
n
j
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estimated by ut = −fuux = −a(ux). One easy way to approximate (ux)
n
j is the central-

difference approach,

(ucx)
n
j =

(u′)nj+1/2 − (u′)nj−1/2)

∆t
(A.25)

where the superscription “c” represents the value is obtained by the central-difference, and

(u′)nj±1/2 = u
n−1/2
j±1/2 + (ut)

n−1/2
j±1/2 ∆t. If discontinuities are present in numerical solutions, the

central-difference cannot be employed because this method causes numerical dissipation

during the approximation.

To minimize the effect of the discontinuity of the solution and to estimate ux more

accurately, Courant number insensitive scheme was introduced in this approximation [163].

For this method, two points, P±, that can be approximated by information at (j ± 1/2),

u′(P+) ≡ u
n−1/2
j+1/2 +

∆t

2
(ut)

n−1/2
j+1/2 −

(1− |ν|)∆t
4

(ux)
n−1/2
j+1/2 (A.26)

u′(P−) ≡ u
n−1/2
j−1/2 +

∆t

2
(ut)

n−1/2
j−1/2 −

(1− |ν|)∆t
4

(ux)
n−1/2
j−1/2 (A.27)

where u′(P±) are first-order Taylor’s approximation of u at points P± in Figure A.4. With

the definitions of CFL number, ν = a∆t/∆x, and the normalized ux, u+
x = ∆x

4
ux, Equa-

tions (A.26) and (A.27) become,

u′(P+) = [u− (1 + 2ν − |ν|)(u+
x )]

n−1/2
j+1/2 (A.28)

u′(P−) = [u+ (1− 2ν − |ν|)(u+
x )]

n−1/2
j−1/2 (A.29)

From the geometric definitions in Figure A.4, (û+
x )nj , (û

+
x+)nj , (û

+
x+)nj , and (ûw+

x )nj can

be defined,
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(û+
x )nj ≡

u′(P+)− u′(P−)

2(1 + |ν|)
=

∆x

4

(
u′(P+)− u′(P−)

(1 + |ν|)∆x/2

)
(A.30)

(û+
x+) ≡

u′(P+)− unj
1 + |ν|

=
∆x

4

(
u′(P+)− unj

(1 + |ν|)∆x/4

)
(A.31)

(û+
x−) ≡

unj − u′(P−)

1 + |ν|
=

∆x

4

(
unj − u′(P−)

(1 + |ν|)∆x/4

)
(A.32)

(ûw+
x )nj ≡ Wo((û

+
x+), (û+

x−);α) =
|(û+

x−)|α(û+
x+) + |(û+

x+)|α(û+
x−)

|(û+
x−)|α + |(û+

x+)|α
(A.33)

where Wo is a weight averaging function, and α ≥ 0. For the equation to determine (ux)
n
j ,

let

(s±)nj =
|(û+

x±)nj |
min(|(û+

x+)nj |, |(û+
x−)nj |)

− 1 ≥ 0 (A.34)

Using Equations (A.33) and (A.34),

(ûw+
x )nj =

[1 + (s−)nj ]α(û+
x+) + [1 + (s+)nj ]α(û+

x−)

[1 + (s−)nj ]α + [1 + (s+)nj ]α
(A.35)

For the case that (s±)nj � 1, Equation (A.35) becomes

(ûw+
x )nj ≈

[1 + α · (s−)nj ](û+
x+) + [1 + α · (s+)nj ](û+

x−)

2 + α[(s−)nj + (s+)nj ]
(A.36)

(ux)
n
j can be approximated using α = f |ν| in Equation (A.36) as,

(ux)
n
j =

4

∆x

[1 + f(|ν|)(s−)nj ](û+
x+)nj + [1 + f(|ν|)(s+)nj ](û+

x−)nj
2 + f(|ν|)[(s−)nj + (s+)nj ]

(A.37)

where

f(|ν|) = 0.5/|ν| (A.38)

141



APPENDIX B

THE DETERMINATION OF VOLUME SHAPE

FACTOR FOR PARACETAMOL CRYSTALS

The volume shape factor of paracetamol crystals, which was mentioned in Chapter 2, was

determined by two methods: 1) gravimetric observation, and 2) geometrical estimation.

B.1 Gravimetric observation

Gravimetric observations were carried out through the following steps: 1) measuring the

mass of empty microscope slide, 2) sampling crystals from specific sieves, 3) putting sam-

Table B.1: The observed volume mean size by gravimetric method

lower tray
size (µm)

upper tray
size (µm)

geometric mean
size (µm) count mass (mg) kv

106 150 126.1 830 1.84 0.875
106 150 126.1 296 0.67 0.894
106 150 126.1 1128 2.17 0.760
150 212 178.3 228 1.06 0.649
150 212 178.3 242 1.03 0.594
212 250 230.2 75 0.72 0.623
212 250 230.2 469 4.50 0.623
212 250 230.2 424 4.46 0.683
355 425 388.4 133 7.68 0.780
355 425 388.4 152 8.28 0.736
425 500 461.0 115 9.85 0.692
500 600 547.7 95 17.00 0.862
600 850 714.1 60 26.76 0.970
600 850 714.1 10 4.44 0.965
600 850 714.1 20 8.86 0.963

average kv 0.778
standard deviation 0.174
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Figure B.1: Four examples of gravimetric observation of the volume shape factor for parac-
etamol crystals: crystals from sieve tray (a) between 106 and 150 µm, (b) between 150 and
212 µm, (c) between 425 and 500 µm, and (d) between 500 and 600 µm.
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pled crystals on a microscope slide, 4) taking a picture of the crystals on the microscopic

slide to count the number of crystals, 5) weighing the mass of the microscopic slide and

crystals, and 6) calculating the volume shape factor with known crystal density and Equa-

tion (2.18). All observed volume shape factors using the gravimetric method are listed in

Table B.1, and four examples of the crystal mass and number from taken images are shown

in Figure B.1. From gravimetric observations, the mean volume shape factor is obtained as

0.778, and the standard deviation is 0.174.

B.2 Geometrical estimation

It has been assumed that the shape of paracetamol crystals has octahedral shape [19, 74].

In this study, the shape factor was evaluated using this assumption and the microscopic

observation. Figure B.2 shows this assumption and the side projection of the laid crystals

on the microscope slide. To evaluate the volume shape factor, each dimension in Figure

B.2 and volume shape factor, kv, are calculated by following equations.

x

a
b

y

z

b

b

b

L

b

a

y

s

(a) (b)
Observing 

direction

Figure B.2: Shape and dimension of an octahedral crystal: (a) 3D shape of the crystals, and
(b) a side view of a laid crystal on the surface and microscopic observing
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Figure B.3: Examples of aspect ratios for microscopically observed crystals from different
sizes of sieve trays: (a) a crystal in 150 – 212 µm, (b) a crystal in 212 – 250 µm, (a) a
crystal in 355 – 425 µm, and (a) a crystal larger than 800 µm.

x =
√
a2 − z2 (B.1)

L = 2b− x (B.2)

y =

√
b2 − a2

4
(B.3)

ay = bz (B.4)

kv =
1

3

2ya2

a3
=

2y

3a
(B.5)

Relative lengths of crystals were determined from the taken microscopic images be-

cause the ratio of relative lengths can be used to estimate the volume shape factor. Four
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Table B.2: The observed volume mean size by geometric method

lower tray
size (µm)

upper tray
size (µm)

geometric
mean size

(µm)
a L L/a b x y z kv

150 212 178.3 0.834 1.308 1.569 1.071 0.740 0.987 0.768 0.789
150 212 178.3 0.825 1.359 1.646 1.092 0.732 1.011 0.764 0.817
150 212 178.3 0.799 1.273 1.593 1.036 0.709 0.956 0.737 0.798
212 250 230.2 1.124 1.661 1.478 1.392 0.999 1.274 1.028 0.756
212 250 230.2 1.103 1.805 1.637 1.454 0.978 1.345 1.020 0.813
250 300 273.9 1.157 2.233 1.929 1.695 1.022 1.593 1.088 0.918
250 300 273.9 1.240 2.087 1.683 1.664 1.099 1.544 1.151 0.830
300 355 326.3 1.605 2.511 1.565 2.058 1.424 1.895 1.478 0.787
300 355 326.3 1.741 2.659 1.528 2.200 1.547 2.021 1.599 0.774
300 355 326.3 1.695 2.609 1.539 2.152 1.506 1.978 1.558 0.778
355 425 388.4 2.182 3.327 1.525 2.755 1.939 2.529 2.004 0.773
355 425 388.4 2.028 3.120 1.539 2.574 1.801 2.366 1.864 0.778
355 425 388.4 1.918 2.997 1.563 2.458 1.702 2.263 1.766 0.787
425 500 461.0 2.330 3.804 1.632 3.067 2.066 2.837 2.155 0.812
425 500 461.0 2.357 3.553 1.508 2.955 2.094 2.710 2.161 0.767
425 500 461.0 2.209 3.788 1.715 2.999 1.956 2.788 2.054 0.841
425 500 461.0 2.213 3.584 1.620 2.898 1.962 2.679 2.045 0.807
500 600 547.7 3.154 4.837 1.534 3.996 2.802 3.671 2.898 0.776
500 600 547.7 2.846 4.491 1.578 3.668 2.525 3.381 2.623 0.792
500 600 547.7 2.682 4.453 1.660 3.568 2.377 3.306 2.485 0.822
500 600 547.7 2.926 4.638 1.585 3.782 2.596 3.487 2.698 0.795
600 800 692.8 3.482 5.432 1.560 4.457 3.091 4.103 3.205 0.786
600 800 692.8 3.354 5.782 1.724 4.568 2.970 4.249 3.120 0.844
600 800 692.8 4.165 6.362 1.528 5.263 3.700 4.834 3.825 0.774
800 1000 894.4 4.978 7.376 1.482 6.177 4.427 5.653 4.556 0.757
800 1000 894.4 5.101 7.553 1.481 6.327 4.536 5.790 4.668 0.757

average kv 0.797
standard deviation 0.0349

example cases are shown in Figure B.3. The microscopic images can show only two lengths

for a and L in Figure B.2. Table B.2 lists the measured dimensions, estimated dimensions

in Figure B.2, and volume shape factors by the geometric analysis. From geometric obser-

vations, the mean volume shape factor is obtained as 0.797, and the standard deviation is

0.0349. The volume shape factors from two different analyzes show close to each other,

0.778 and 0.797.
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APPENDIX C

COMPARISON OF CRYSTAL DISSOLUTION RATE

BETWEEN THE LITERATURE MODEL AND THIS

WORK

This section compares the dissolution rate given by the PBM in Chapter 3 to the one in Wor-

litschek and Mazzotti [74]. In Worlitschek and Mazzotti’s work, they applied the PBM to

explain crystallization and dissolution. Their work included secondary nucleation, growth

and dissolution, while our model also includes primary nucleation.

In the model given by Worklitschek and Mazzotti, the secondary nucleation rate is 0

when S is equal to or less than 1. However, the “growth rate” becomes the dissolution rate

at the condition with S less than 1 and it follows a correlation as below:

G =
2kd∆c

cc
, S < 1 (C.1)

where kd is the mass transfer coefficient [m/s], ∆c is the absolute supersaturation [kmol/m3]

which is cs−c, and cc is the molar density of solid solute [kmol/m3]. Here, the mass transfer

coefficient kd can be obtained with Equations from (C.2) to (C.6).

kd =
Ddiff

L

(
2 + 0.8

(
εL̄4ρ3

l

η3
l

) 1
5

Sc
1
3

)
(C.2)

where ε is the mean specific power input [W/kg], L̄ is the particle size applied for calcula-

tion of kd and is 10−4 in their work, and Sc is Schmidt number as

Sc =
ηl
Dρl

(C.3)
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ε =
Nev

3
sd

5
s

Vr
(C.4)

where Ne is Power number or Newton number, vs is stirring speed [rps], ds is the impeller

diameter [m], and Vr is total liquid phase volume [m3].

Ddiff =
kT

2πηldm
(C.5)

dm = 3

√
1

ccNA

(C.6)

In the above equations, we need to estimate the Power number Ne to calculate the

dissolution rate. Worlitschek and Mazzotti assumed the power number as 0.5 which is the

intermediate value from 0.3 to 0.7 for propellers. However, our apparatus may have the

different power number than propellers, which has a pitched four-blade impeller which.

Thus, we identified a correlation to obtain the power number according to the blade shape,

angles, and numbers, to enable comparison with their model.

In this study, we employed the estimation method given by Hiraoka et al. [164] Their

study produced a correlation to obtain power number for the pitched blade paddle impeller

in agitated vessels. The power number becomes constant as the flow regime moves into

the turbulent region and the stable power number in the turbulent region depends on type

of impeller. If the flow regime is in transitional region (100 < Re < 10000), the power

number of the agitator changes slightly as shown in Figure C.1 [165].

To employ the method by Hiraoka et al., Reynolds number is necessary. The Reynolds

number, Re for the impeller is defined by [165]:

Re =
ρlvsd

2
s

ηl
(C.7)

The dimension of the impeller and values of each characteristic of our system is in
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Figure C.1: Power number versus impeller Reynolds number for seven different impellers.
[Reprinted with permission for Figure 6-14 from Paul et al.[165] Copyright Wiley Books]

Figure C.2. In our system, d = 3.81 cm, b = 0.87 cm, and θ is 34◦. The angle of the pitched

blade is estimated based on the trigonometrical as Figure C.1 and the unit of the angle

for the calculation is converted to radians. Using these numbers, we found the Reynolds

number in our system at 20 ◦C is 6,448 and it is in the transition regime. Because the

Reynolds number is in the transition regime, the power number, Ne (Np in Figure C.1),

may not be constant.

Figure C.2: The angle and dimensions of the pitched blade in our system
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The power number given by Figure C.1 is not for the pitched blade, which is used in

our experiments. For this type of impeller, Hiraoka et al. suggested the correlation of the

maximum power number of a pitched blade impeller as

Ne,max,θ = 8.3

(
2θ

π

)0.9
(
n0.7
p b sin1.6 θ

d

)
(C.8)

where np is the number of blades, and other variables are in Figure C.2. After we obtain

the power number, then we can calculate the mean specific power input, the mass transfer

coefficient, and finally the dissolution rate in Equation (C.1).

Table C.1: Comparison of dissolution rate based on kinetics between the literature and this
work.

Conditions Dissolution rate

Temperature
[◦C]

∆c
[g/kg]

by literature
model

(Np = 0.003)

by literature
model

(Np = 0.5)

by literature
model

(Np = 5)

by this model
(with initial

guesses in SI)

by this model
(with final
parameters

in Chapter 3)
10 5 3.281 6.730 9.898 4.614 5.443
20 3 2.024 4.142 6.087 3.308 3.966
30 10 6.932 14.15 20.78 11.56 13.35

The estimated power number through Equation (C.8) for our system was 0.003 which is

significantly lower than the literature. To validate this number, we calculated the dissolution

rates at this value of 0.003, as well as at higher values of 0.5 and 5. We chose the latter

two numbers as follows: the first power number, 0.5, is the value from the literature and

the other, 5, is the possible maximum value near 6,000 of the Reynolds number in Figure

C.1. The parameters to estimate the dissolution rates using the literature model were taken

from the Worlitschek and Mazzotti1, while different values were employed for equipment-

specific parameters such as the dimension of the stirrer. The comparison of dissolution

rates for given conditions are shown in Table C.1. In this table, dissolution rates given

by our model is always between values by Worlitschek and Mazzotti model1 with the two

power numbers, Ne = 0.003 and Ne = 5.
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APPENDIX D

DETERMINATION OF PARTICLE SIZE

DISTRIBUTION USING THE MICROSCOPIC

METHOD

In this work, I tried to employ microscopic image analysis to determine the final crystal

size distributions. The filtered and dried crystals were microscopically observed before the

sieving analysis. At the first step of the observation, a picture of the one-millimeter-ruler

with a tick of 10 µm was taken to scale images as shown in Figure D.1.

The crystal size in images can be counted as pixel, so a conversion factor from pixel to

length is necessary. One millimeter is shown as 273 pixels in the resolution of the image

1 mm
= 273 px

Figure D.1: The one-millimeter-ruler with 10 µm ticks for the reference
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(a) (b)

Figure D.2: Image pre-processing for cases that crystals are located too close. (a) Original
image, and (b) pre-processed image. The red dashed circles in right and lower of figure (b)
present the processed crystal images.

sensor, so this was used to convert the pixel of crystal diameter with a length unit.

Pre-processing all images was necessary to distinguish crystals that were too close or to

eliminate crystals that were likely to be detected incorrectly. Figure D.2 shows an example

of pre-processing of raw images. A code read the pre-treated images to evaluate the crystal

size. Figure D.3 presents image processing steps to analyze the crystal size distribution.

The code calls a pre-handled image and makes it a monochrome image. In this step, crystals

(a) (b) (c)

(d) (e) (f)

Figure D.3: Image processing steps: (a) Calling the original image, (b) making a B/W
image, (c) finding the edges of the objects, (d) detecting clear edges, (e) filling the holes in
each object to make a crystal object, and (f) removing small artifacts.
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that are cut by the image border are ignored. Next, the code finds and detects the apparent

edge of crystals. After this process, the code fills the hole of crystals in the image. As the

final step, small dots that is less than the criteria are removed to clear the analysis.

Image analysis was carried out for an experimental case. I took 180 microscopic images

before the sieving analysis, and all images were processed through the steps in Figure

D.3. The image analysis is conducting statistically for sampled crystals, so the number of

microscopic images can affect the quality of the investigation. However, the image analysis

does not waste the sample crystals, but sieving analysis cannot recover analyzed crystals

perfectly.

Figure D.4(a) compares the mass distribution from sieving results and image analysis

using the scale factor for 273 px/µm. However, the mass distribution by image analysis

is skewed more to the right than sieve analysis provides, which means that the sample has

more large crystals. Therefore, other scale factors were tried to be found that can make the

image analysis results similar to the sieving analysis results. The new scale factor was 350

px/µm, and the result is shown in Figure D.4(b). However, it has no theoretical basis.

Even though an image analysis process was set up, it requires more improvement. If the

image analysis procedure will be accomplished, we can obtain crystal size distribution that

quality is improved. Also, if we take numerous images, we can randomly choose sample

images to analyze the size distribution and repeat this step, so we can make sure the size

distribution is reliable statistically.
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Figure D.4: Comparison between sieving and image analysis: (a)with a scale factor 273
px/µm, and (b)with a scale factor 350 px/µm
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APPENDIX E

ADDITIONAL RESULTS

E.1 Comparisons between experimental data and PBM results

In Chapter 3, the kinetic parameters of a PBM were determined by three training sets, and

the model was validated using three test sets. Because only one case from training and test

sets is shown in Chapter 3, the comparisons of Exp. 9 and 10 from the training set (Figures

E.1 and E.2) and Exp. 12 and 13 from the test set (Figures E.3 and E.4) are shown in this

section.

For all comparison, the trends of supersaturation and crystal mass in the solution by

the PBM follows the experimental data. In particular, the supersaturation and crystal mass

trends, while the temperature cycling is applied, fit and predict the experimental data with

high accuracy. However, the trends at the end of the temperature plateau in Exp. 9 (Fig-

ure E.1), the fitted supersaturation and crystal mass show slight discrepancies from the

experimental data. This discrepancy seems to be due to the stochastic nature of primary

nucleation and subsequent supersaturation consumption by secondary nucleation and crys-

tal growth.

For the volume density distribution of crystals, the fitted and predicted distribution is

similar to the sieved results. Therefore, the volume-weighted mean crystal sizes in Table

3.8 show errors less than ±12%.
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Figure E.1: Comparisons between experimental data and fitted results for the Exp. 9 in
training sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume density distri-
bution, and (d) cumulative volume density distribution.
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Figure E.2: Comparisons between experimental data and fitted results for the Exp. 10
in training sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume density
distribution, and (d) cumulative volume density distribution.
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Figure E.3: Comparisons between experimental data and fitted results for the Exp. 12 in test
sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume density distribution,
and (d) cumulative volume density distribution.
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Figure E.4: Comparisons between experimental data and fitted results for the Exp. 13 in test
sets: (a) supersaturation, (b) crystal mass in the solution, (c) volume density distribution,
and (d) cumulative volume density distribution.
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E.2 Open-loop control results using the obtained optimal temperature

profiles

In Chapter 4, two comparisons (Cases 1 and 4) were presented from four cases, so the re-

maining comparison is shown in this section. The temperature profiles from the open-loop

control experiments were implemented in the PBM and the simulated results for Case 2 and

3 are shown in Figures E.5 and E.6. The trends of the supersaturation and crystal mass are

following the experimental data with slight discrepancies, but the simulated volume density

distributions results show left-skewed distributions largely than experimental data. These

results makes the smaller mean volume crystal sizes as shown in Table 4.4. These results

imply the PBM kinetic models require additional parameter estimations using experimental

data for wider condition ranges for more accurate predictions.
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Figure E.5: Comparison of open-loop control results for Case 2: (a) supersaturation, (b)
crystal mass in the solution, (c) volume density distribution, and (d) cumulative volume
density distribution.
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Figure E.6: Comparison of open-loop control results for Case 3: (a) supersaturation, (b)
crystal mass in the solution, (c) volume density distribution, and (d) cumulative volume
density distribution.
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(12) Volmer, M.; Weber, A. Keimbildung in übersättigten Gebilden. Zeitschrift für Physikalis-
che Chemie 1926, 119, 277–301.

(13) Izmailov, A. F.; Myerson, A. S.; Arnold, S. A statistical understanding of nucle-
ation. Journal of Crystal Growth 1999, 196, 234–242.

162
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